Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleftherios Mylonakis is active.

Publication


Featured researches published by Eleftherios Mylonakis.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A simple model host for identifying Gram-positive virulence factors

Danielle A. Garsin; Costi D. Sifri; Eleftherios Mylonakis; Xiang Qin; Kavindra V. Singh; Barbara E. Murray; Stephen B. Calderwood; Frederick M. Ausubel

We demonstrate the use of the nematode Caenorhabditis elegans as a facile and inexpensive model host for several Gram-positive human bacterial pathogens. Enterococcus faecalis, Streptococcus pneumoniae, and Staphylococcus aureus, but not Bacillus subtilis, Enterococcus faecium, or Streptococcus pyogenes, kill adult C. elegans. Focusing our studies on the enterococcal species, we found that both E. faecalis and E. faecium kill C. elegans eggs and hatchlings, although only E. faecalis kills the adults. In the case of adults, a low inoculum of E. faecalis grows to a high titer in the C. elegans intestine, resulting in a persistent infection that cannot be eradicated by prolonged feeding on E. faecium. Interestingly, a high titer of E. faecium also accumulates in the nematode gut, but does not affect the longevity of the worms. Two E. faecalis virulence-related factors that play an important role in mammalian models of infection, fsr, a putative quorum-sensing system, and cytolysin, are also important for nematode killing. We exploit the apparent parallels between Gram-positive infection in simple and more complex organisms by using the nematode to identify an E. faecalis virulence factor, ScrB, which is relevant to mammalian pathogenesis.


Clinical Infectious Diseases | 2009

Google Trends: A Web-Based Tool for Real-Time Surveillance of Disease Outbreaks

Herman A. Carneiro; Eleftherios Mylonakis

Google Flu Trends can detect regional outbreaks of influenza 7-10 days before conventional Centers for Disease Control and Prevention surveillance systems. We describe the Google Trends tool, explain how the data are processed, present examples, and discuss its strengths and limitations. Google Trends shows great promise as a timely, robust, and sensitive surveillance system. It is best used for surveillance of epidemics and diseases with high prevalences and is currently better suited to track disease activity in developed countries, because to be most effective, it requires large populations of Web search users. Spikes in search volume are currently hard to interpret but have the benefit of increasing vigilance. Google should work with public health care practitioners to develop specialized tools, using Google Flu Trends as a blueprint, to track infectious diseases. Suitable Web search query proxies for diseases need to be established for specialized tools or syndromic surveillance. This unique and innovative technology takes us one step closer to true real-time outbreak surveillance.


Medicine | 1998

Central nervous system infection with Listeria monocytogenes. 33 years' experience at a general hospital and review of 776 episodes from the literature.

Eleftherios Mylonakis; Elizabeth L. Hohmann; Stephen B. Calderwood

We reviewed 776 previously reported and 44 new cases of CNS listeriosis outside of pregnancy and the neonatal period, and evaluated the epidemiologic, diagnostic, and therapeutic characteristics of this infection. Among patients with Listeria meningitis/meningoencephalitis, hematologic malignancy and kidney transplantation were the leading predisposing factors, but 36% of patients had no underlying diseases recognized. The infection occurred throughout life, with a higher incidence before the age of 3 and after the age of 45-50 years. Fever, altered sensorium, and headache were the most common symptoms, but 42% of patients had no meningeal signs on admission. Compared with patients with acute meningitis due to other bacterial pathogens, patients with Listeria infection had a significantly lower incidence of meningeal signs, and the CSF profile was significantly less likely to have a high WBC count or a high protein concentration. Gram stain of CSF was negative in two-thirds of cases of CNS listeriosis. One-third of patients had focal neurologic findings, and approximately one-fourth developed seizures over their course. Mortality was 26% overall, and was higher among patients with seizures and those older than 65 years of age. Relapse occurred in 7% of episodes. Ampicillin for a minimum of 15-21 days (with an aminoglycoside for at least the first 7-10 days) remains the treatment of choice. Cerebritis/abscess due to L. monocytogenes, without meningeal involvement, is less common but may be diagnosed by blood cultures and CNS imaging, or by stereotactic biopsy. Longer antibiotic therapy (at least 5-6 weeks) is needed in the presence of localized CNS involvement.


Infection and Immunity | 2005

Galleria mellonella as a Model System To Study Cryptococcus neoformans Pathogenesis

Eleftherios Mylonakis; Roberto Moreno; Joseph El Khoury; Alexander Idnurm; Joseph Heitman; Stephen B. Calderwood; Frederick M. Ausubel; Andrew C. Diener

ABSTRACT Evaluation of Cryptococcus neoformans virulence in a number of nonmammalian hosts suggests that C. neoformans is a nonspecific pathogen. We used the killing of Galleria mellonella (the greater wax moth) caterpillar by C. neoformans to develop an invertebrate host model system that can be used to study cryptococcal virulence, host immune responses to infection, and the effects of antifungal compounds. All varieties of C. neoformans killed G. mellonella. After injection into the insect hemocoel, C. neoformans proliferated and, despite successful phagocytosis by host hemocytes, killed caterpillars both at 37°C and 30°C. The rate and extent of killing depended on the cryptococcal strain and the number of fungal cells injected. The sequenced C. neoformans clinical strain H99 was the most virulent of the strains tested and killed caterpillars with inocula as low as 20 CFU/caterpillar. Several C. neoformans genes previously shown to be involved in mammalian virulence (CAP59, GPA1, RAS1, and PKA1) also played a role in G. mellonella killing. Combination antifungal therapy (amphotericin B plus flucytosine) administered before or after inoculation was more effective than monotherapy in prolonging survival and in decreasing the tissue burden of cryptococci in the hemocoel. The G. mellonella-C. neoformans pathogenicity model may be a substitute for mammalian models of infection with C. neoformans and may facilitate the in vivo study of fungal virulence and efficacy of antifungal therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis

Eleftherios Mylonakis; Frederick M. Ausubel; John R. Perfect; Joseph Heitman; Stephen B. Calderwood

We found that the well-studied nematode Caenorhabditis elegans can use various yeasts, including Cryptococcus laurentii and Cryptococcus kuetzingii, as a sole source of food, producing similar brood sizes compared with growth on its usual laboratory food source Escherichia coli OP50. C. elegans grown on these yeasts had a life span similar to (C. laurentii) or longer than (C. kuetzingii) those fed on E. coli. However, the human pathogenic yeast Cryptococcus neoformans killed C. elegans, and the C. neoformans polysaccharide capsule as well as several C. neoformans genes previously shown to be involved in mammalian virulence were also shown to play a role in C. elegans killing. These included genes associated with signal transduction pathways (GPA1, PKA1, PKR1, and RAS1), laccase production (LAC1), and the α mating type. C. neoformans adenine auxotrophs, which are less virulent in mammals, were also less virulent in C. elegans. These results support the model that mammalian pathogenesis of C. neoformans may be a consequence of adaptations that have evolved during the interaction of C. neoformans with environmental predators such as free-living nematodes and amoebae and suggest that C. elegans can be used as a simple model host in which C. neoformans pathogenesis can be readily studied.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease

Leah E. Cowen; Sheena D. Singh; Julia R. Köhler; Cathy Collins; Aimee K. Zaas; Wiley A. Schell; Hamza Aziz; Eleftherios Mylonakis; John R. Perfect; Luke Whitesell; Susan Lindquist

Invasive fungal infections are a leading cause of mortality among immunocompromised individuals. Treatment is notoriously difficult with the limited armamentarium of antifungal drugs, whose efficacy is compromised by host toxicity, a limited activity spectrum, or the emergence of drug resistance. We previously established that the molecular chaperone Hsp90 enables the emergence and maintenance of fungal drug resistance. For the most prevalent fungal pathogen of humans, Candida albicans, Hsp90 mediates resistance to azoles, which inhibit ergosterol biosynthesis and are the most widely deployed antifungals in the clinic. For the emerging opportunistic pathogen Aspergillus terreus, Hsp90 is required for basal resistance to echinocandins, which inhibit β(1, 3)-glucan synthesis and are the only new class of antifungals to reach the clinic in decades. Here, we explore the therapeutic potential of Hsp90 inhibitors in fungal disease using a tractable host-model system, larvae of the greater wax moth Galleria mellonella, and a murine model of disseminated disease. Combination therapy with Hsp90 inhibitors that are well tolerated in humans and an azole rescued larvae from lethal C. albicans infections. Combination therapy with an Hsp90 inhibitor and an echinocandin rescued larvae from infections with the most lethal mold, Aspergillus fumigatus. In a murine model of disseminated candidiasis, genetic compromise of C. albicans HSP90 expression enhanced the therapeutic efficacy of an azole. Thus, harnessing Hsp90 provides a much-needed strategy for improving the treatment of fungal disease because it enhances the efficacy of existing antifungals, blocks the emergence of drug resistance, and exerts broad-spectrum activity against diverse fungal pathogens.


Nature Reviews Microbiology | 2010

Medically important bacterial–fungal interactions

Anton Y. Peleg; Deborah A. Hogan; Eleftherios Mylonakis

Whether it is in the setting of disease or in a healthy state, the human body contains a diverse range of microorganisms, including bacteria and fungi. The interactions between these taxonomically diverse microorganisms are highly dynamic and dependent on a multitude of microorganism and host factors. Human disease can develop from an imbalance between commensal bacteria and fungi or from invasion of particular host niches by opportunistic bacterial and fungal pathogens. This Review describes the clinical and molecular characteristics of bacterial–fungal interactions that are relevant to human disease.


Nature | 2008

A nuclear receptor-like pathway regulating multidrug resistance in fungi

Jitendra K. Thakur; Haribabu Arthanari; Fajun Yang; Shih Jung Pan; Xiaochun Fan; Julia Breger; Dominique P. Frueh; Kailash Gulshan; Darrick K. Li; Eleftherios Mylonakis; Kevin Struhl; W. Scott Moye-Rowley; Brendan P. Cormack; Gerhard Wagner; Anders M. Näär

Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.


PLOS Pathogens | 2007

Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

Julia Breger; Beth Burgwyn Fuchs; George Aperis; Terence I. Moy; Frederick M. Ausubel; Eleftherios Mylonakis

There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (∼1.2%) that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as “probe compounds” and may have antifungal activity against other fungi.


Journal of Experimental Medicine | 2009

Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36

Terry K. Means; Eleftherios Mylonakis; Emmanouil Tampakakis; Richard A. Colvin; Edward Seung; Lindsay Puckett; Melissa F. Tai; Cameron R. Stewart; Read Pukkila-Worley; Suzanne E. Hickman; Kathryn J. Moore; Stephen B. Calderwood; Nir Hacohen; Andrew D. Luster; Joseph El Khoury

Receptors involved in innate immunity to fungal pathogens have not been fully elucidated. We show that the Caenorhabditis elegans receptors CED-1 and C03F11.3, and their mammalian orthologues, the scavenger receptors SCARF1 and CD36, mediate host defense against two prototypic fungal pathogens, Cryptococcus neoformans and Candida albicans. CED-1 and C03F11.1 mediated antimicrobial peptide production and were necessary for nematode survival after C. neoformans infection. SCARF1 and CD36 mediated cytokine production and were required for macrophage binding to C. neoformans, and control of the infection in mice. Binding of these pathogens to SCARF1 and CD36 was β-glucan dependent. Thus, CED-1/SCARF1 and C03F11.3/CD36 are β-glucan binding receptors and define an evolutionarily conserved pathway for the innate sensing of fungal pathogens.

Collaboration


Dive into the Eleftherios Mylonakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge