Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Coleman is active.

Publication


Featured researches published by Jeffrey J. Coleman.


Nature | 2010

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma; H. Charlotte van der Does; Katherine A. Borkovich; Jeffrey J. Coleman; Marie Josée Daboussi; Antonio Di Pietro; Marie Dufresne; Michael Freitag; Manfred Grabherr; Bernard Henrissat; Petra M. Houterman; Seogchan Kang; Won Bo Shim; Charles P. Woloshuk; Xiaohui Xie; Jin-Rong Xu; John Antoniw; Scott E. Baker; Burton H. Bluhm; Andrew Breakspear; Daren W. Brown; Robert A. E. Butchko; Sinéad B. Chapman; Richard M. R. Coulson; Pedro M. Coutinho; Etienne Danchin; Andrew C. Diener; Liane R. Gale; Donald M. Gardiner; Stephen A. Goff

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Science Translational Medicine | 2013

T2 Magnetic Resonance Enables Nanoparticle-Mediated Rapid Detection of Candidemia in Whole Blood

Lori Anne Neely; Mark John Audeh; Nu Ai Phung; Michael Min; Adam Suchocki; Daniella Lynn Plourde; Matthew Blanco; Vasiliki Demas; Lynell R. Skewis; Theodora Anagnostou; Jeffrey J. Coleman; Parris Wellman; Eleftherios Mylonakis; Thomas Jay Lowery

Nanoparticles and T2 magnetic resonance allow for DNA amplification and detection of Candida species in clinical whole-blood specimens. Nanoparticle Clusters Rapidly Detect Candida Time is not on the side of patients suspected of blood infection (sepsis). Patients with bloodstream infections of Candida species are often misdiagnosed. Or, the diagnosis comes too late. These two factors contribute to a high mortality rate of 40% from this fungus. To deliver a quick and accurate diagnosis for candidemia, Neely and colleagues designed an assay that combines nanotechnology and clinical imaging. The authors developed a nano-inspired platform that detects DNA from five of the most common Candida species found in patient blood. Candida cells were first lysed mechanically, and then polymerase chain reaction primers and a polymerase-like enzyme were added to selectively amplify the released DNA. Nanoparticles with complementary “capture probes” could then bind to the amplified DNA. At that point, the free particles clustered together, allowing for detection with T2 magnetic resonance (T2MR). Neely et al. built a portable T2MR instrument for detecting the fungal DNA at the patient’s bedside. With this technology, they were able to detect down to three colony-forming units (CFU) of C. albicans and C. tropicalis per milliliter of blood; even lower limits of detection (1 to 2 CFU/ml) were observed for C. krusei, C. glabrata, and C. parapsilosis. Using whole-blood samples from 24 patients, the authors were able to correctly identify the 8 candidemic patients, without any false-positive readouts from blood samples that contained bacteria. The combination of nanoparticles and clinical MR detection allowed for specific detection of Candida species in infected patients’ blood. The T2MR readouts were even more sensitive than blood culture, showing residual Candida cells in patients undergoing treatment with antifungal medication days after blood culture tests were negative. With such portability and sensitivity, this nanoparticle platform could be used in the clinic to diagnose blood infection earlier than standard culture, thus allowing for rapid treatment of septic patients, where time is of the essence. Candida spp. cause both local and disseminated infections in immunocompromised patients. Bloodstream infections of Candida spp., known as “candidemia,” are associated with a high mortality rate (40%), which is mainly attributed to the long diagnostic time required by blood culture. We introduce a diagnostic platform based on T2 magnetic resonance (T2MR), which is capable of sensitive and rapid detection of fungal targets in whole blood. In our approach, blood-compatible polymerase chain reaction is followed by hybridization of the amplified pathogen DNA to capture probe–decorated nanoparticles. Hybridization yields nanoparticle microclusters that cause large changes in the sample’s T2MR signal. With this T2MR-based method, Candida spp. can be detected directly in whole blood, thus eliminating the need for analyte purification. Using a small, portable T2MR detection device, we were able to rapidly, accurately, and reproducibly detect five Candida species within human whole blood with a limit of detection of 1 colony-forming unit/ml and a time to result of <3 hours. Spiked blood samples showed 98% positive agreement and 100% negative agreement between T2MR and blood culture. Additionally, performance of the assay was evaluated on 21 blinded clinical specimens collected serially. This study shows that the nanoparticle- and T2MR-based detection method is rapid and amenable to automation and offers clinicians the opportunity to detect and identify multiple human pathogens within hours of sample collection.


PLOS Pathogens | 2009

Efflux in Fungi: La Piece de Resistance

Jeffrey J. Coleman; Eleftherios Mylonakis

Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents.


Frontiers in Microbiology | 2012

Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform

Tianhong Dai; Beth Burgwyn Fuchs; Jeffrey J. Coleman; Renato Araujo Prates; Christos Astrakas; Tyler G. St. Denis; Martha Simões Ribeiro; Eleftherios Mylonakis; Michael R. Hamblin; George P. Tegos

Opportunistic fungal pathogens may cause superficial or serious invasive infections, especially in immunocompromised and debilitated patients. Invasive mycoses represent an exponentially growing threat for human health due to a combination of slow diagnosis and the existence of relatively few classes of available and effective antifungal drugs. Therefore systemic fungal infections result in high attributable mortality. There is an urgent need to pursue and deploy novel and effective alternative antifungal countermeasures. Photodynamic therapy (PDT) was established as a successful modality for malignancies and age-related macular degeneration but photodynamic inactivation has only recently been intensively investigated as an alternative antimicrobial discovery and development platform. The concept of photodynamic inactivation requires microbial exposure to either exogenous or endogenous photosensitizer molecules, followed by visible light energy, typically wavelengths in the red/near infrared region that cause the excitation of the photosensitizers resulting in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation and death. Antifungal PDT is an area of increasing interest, as research is advancing (i) to identify the photochemical and photophysical mechanisms involved in photoinactivation; (ii) to develop potent and clinically compatible photosensitizers; (iii) to understand how photoinactivation is affected by key microbial phenotypic elements multidrug resistance and efflux, virulence and pathogenesis determinants, and formation of biofilms; (iv) to explore novel photosensitizer delivery platforms; and (v) to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants.


Phytopathology | 2013

One fungus, one name

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2013

One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use.

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


ACS Chemical Biology | 2010

Characterization of plant-derived saponin natural products against Candida albicans

Jeffrey J. Coleman; Ikechukwu Okoli; George P. Tegos; Edward B. Holson; Florence F. Wagner; Michael R. Hamblin; Eleftherios Mylonakis

Candida albicans is an opportunistic fungal pathogen capable of life-threatening disseminated infections particularly in immunocompromised patients. Resistance to many clinically used antifungal agents has created a need to identify and develop a new generation of compounds for therapeutic use. A compound screen to identify potential antifungal natural products was undertaken, identifying 12 saponins, some of which have not been previously described. In the Caenorhabditis elegans model, some saponins conferred nematode survival comparable to that of amphotericin B. Of the 12 antifungal saponins identified, two were selected for further analysis. C. albicans isolates were inhibited by these compounds at relatively low concentrations (16 and 32 microg mL(-1)) including isolates resistant to clinically used antifungal agents. C. albicans hyphae and biofilm formation were also disrupted in the presence of these natural products, and studies demonstrate that fungal cells in the presence of saponins are more susceptible to salt-induced osmotic stress. Although saponins are known for their hemolytic activity, no hemolysis of erythrocytes was observed at three times the minimal inhibitory concentration for C. albicans, suggesting the saponins may have a preference for binding to fungal ergosterol when compared to cholesterol. Importantly, when used in combination with photosensitizer compounds, the fungus displayed increased susceptibility to photodynamic inactivation due to the ability of the saponins to increase cell permeability, thereby facilitating penetration of the photosensitizers. The large proportion of compounds identified as antifungal agents containing saponin structural features suggests it may be a suitable chemical scaffold for a new generation of antifungal compounds.


PLOS ONE | 2009

Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

Ikechukwu Okoli; Jeffrey J. Coleman; Emmanouil Tempakakis; W. Frank An; Edward B. Holson; Florence F. Wagner; Annie L. Conery; Jonah Larkins-Ford; Gang Wu; Andy Stern; Frederick M. Ausubel; Eleftherios Mylonakis

Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans–C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.


Virulence | 2011

The challenge of managing fusariosis.

Maged Muhammed; Herman A. Carneiro; Jeffrey J. Coleman; Eleftherios Mylonakis

Fusarium is the second most frequent mold involved in fungal infections and is particularly important among immunocompromised patients. Culture methods and microscopy are still routinely used in clinical laboratories to identify Fusarium spp, and more sophisticated, timely, and effective methods for detecting Fusarium spp. in laboratory samples could improve the outcome of the patient. These investigational diagnostic approaches include serological assays and specific nested PCR assays that can yield positive and negative predictive values of over 90%. Other assays in development, such as mass spectroscopy techniques, can provide accurate and consistent results. The treatment of fusariosis in immunocompromised patients remains a challenge and the prognosis of systemic fusariosis in this population remains poor. Successful treatment is highly dependent on the particular Fusarium species involved in the infection. High dose intravenous amphotericin B formulation is recommended as the first line of therapy in management of fusariosis in patients. Voriconazole is also effective in treating fusariosis. Intolerance, contraindication, or failure of the amphotericin B formulation warrants the use of voriconazole as an alternative agent, and posaconazole is licensed as salvage therapy against invasive fusariosis. Adjunctive therapies such as surgical debridement of infected tissue, granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage colony stimulating factor (GM-CSF) infusions, or granulocyte transfusions are also tools for managing fusariosis. In conclusion, Fusarium infection is considered an emerging problem and should be suspected in immunocompromised patients experiencing systemic infection and should be treated accordingly.


Medicine | 2013

Fusarium infection: report of 26 cases and review of 97 cases from the literature.

Maged Muhammed; Theodora Anagnostou; Athanasios Desalermos; Themistoklis K. Kourkoumpetis; Herman A. Carneiro; Justin Glavis-Bloom; Jeffrey J. Coleman; Eleftherios Mylonakis

AbstractFusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases.Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested.

Collaboration


Dive into the Jeffrey J. Coleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daren W. Brown

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge