Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Deych is active.

Publication


Featured researches published by Elena Deych.


Clinical Pharmacology & Therapeutics | 2008

Use of Pharmacogenetic and Clinical Factors to Predict the Therapeutic Dose of Warfarin

Brian F. Gage; Charles S. Eby; Julie A. Johnson; Elena Deych; Mark J. Rieder; Paul M. Ridker; Paul E. Milligan; Gloria R. Grice; Petra Lenzini; Allan E. Rettie; Christina L. Aquilante; Leonard E. Grosso; Sharon Marsh; Taimour Y. Langaee; Le Farnett; Deepak Voora; Dl Veenstra; Robert J. Glynn; A Barrett; Howard L. McLeod

Initiation of warfarin therapy using trial‐and‐error dosing is problematic. Our goal was to develop and validate a pharmacogenetic algorithm. In the derivation cohort of 1,015 participants, the independent predictors of therapeutic dose were: VKORC1 polymorphism −1639/3673 G>A (−28% per allele), body surface area (BSA) (+11% per 0.25 m2), CYP2C9*3 (−33% per allele), CYP2C9*2 (−19% per allele), age (−7% per decade), target international normalized ratio (INR) (+11% per 0.5 unit increase), amiodarone use (−22%), smoker status (+10%), race (−9%), and current thrombosis (+7%). This pharmacogenetic equation explained 53–54% of the variability in the warfarin dose in the derivation and validation (N= 292) cohorts. For comparison, a clinical equation explained only 17–22% of the dose variability (P < 0.001). In the validation cohort, we prospectively used the pharmacogenetic‐dosing algorithm in patients initiating warfarin therapy, two of whom had a major hemorrhage. To facilitate use of these pharmacogenetic and clinical algorithms, we developed a nonprofit website, http://www.WarfarinDosing.org.


Blood | 2010

In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia

Jaebok Choi; Julie Ritchey; Julie L. Prior; Matthew Holt; William D. Shannon; Elena Deych; David Piwnica-Worms; John F. DiPersio

Regulatory T cells (Tregs) suppress graft-versus-host disease (GVHD) while preserving a beneficial graft-versus-leukemia (GVL) effect. Thus, their use in allogeneic stem cell transplantation (SCT) provides a promising strategy to treat GVHD. However, 3 obstacles prevent their routine use in human clinical trials: (1) low circulating number of Tregs in peripheral blood, (2) loss of suppressor function after in vitro expansion, and (3) lack of Treg-specific surface markers necessary for efficient purification. FOXP3 is exclusively expressed in Tregs and forced expression in CD4(+)CD25(-) T cells can convert these non-Tregs into Tregs with functional suppressor function. Here, we show that the FDA-approved hypomethylating agents, decitabine (Dec) and azacitidine (AzaC), induce FOXP3 expression in CD4(+)CD25(-) T cells both in vitro and in vivo. Their suppressor function is dependent on direct contact, partially dependent on perforin 1 (Prf1), but independent of granzyme B (GzmB), and surprisingly, Foxp3. Independence of Foxp3 suggests that genes responsible for the suppressor function are also regulated by DNA methylation. We have identified 48 candidate genes for future studies. Finally, AzaC treatment of mice that received a transplant of major histocompatibility complex mismatched allogeneic bone marrow and T cells mitigates GVHD while preserving GVL by peripheral conversion of alloreactive effector T cells into FOXP3(+) Tregs and epigenetic modulation of genes downstream of Foxp3 required for the suppressor function of Tregs.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Patterned progression of bacterial populations in the premature infant gut

Patricio S. La Rosa; Barbara B. Warner; Yanjiao Zhou; George M. Weinstock; Erica Sodergren; Carla Hall-Moore; Harold J. Stevens; William E. Bennett; Nurmohammad Shaikh; Laura Linneman; Julie A. Hoffmann; Aaron Hamvas; Elena Deych; Berkley Shands; William D. Shannon; Phillip I. Tarr

Significance It is increasingly apparent that bacteria in the gut are important determinants of health and disease in humans. However, we know remarkably little about how this organ transitions from a sterile/near-sterile state at birth to one that soon harbors a highly diverse biomass. We show in premature infants a patterned progression of the gut bacterial community that is only minimally influenced by mode of delivery, antibiotics, or feeds. The pace of this progression is most strongly influenced by gestational age, with the microbial population assembling slowest for infants born most prematurely. These data raise the possibility that host biology, more than exogenous factors such as antibiotics, feeds, and route of delivery, drives bacterial populations in the premature newborn infant gut. In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33–36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration.


Blood | 2009

BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells.

Pablo Ramirez; Michael P. Rettig; Geoffrey L. Uy; Elena Deych; Matthew Holt; Julie Ritchey; John F. DiPersio

Here we show that interruption of the VCAM-1/VLA-4 axis with a small molecule inhibitor of VLA-4, BIO5192, results in a 30-fold increase in mobilization of murine hematopoietic stem and progenitors (HSPCs) over basal levels. An additive affect on HSPC mobilization (3-fold) was observed when plerixafor (AMD3100), a small molecule inhibitor of the CXCR-4/SDF-1 axis, was combined with BIO5192. Furthermore, the combination of granulocyte colony-stimulating factor (G-CSF), BIO5192, and plerixafor enhanced mobilization by 17-fold compared with G-CSF alone. HSPCs mobilized by BIO5192 or the combination of BIO5192 and plerixafor mobilized long-term repopulating cells, which successfully engraft and expand in a multilineage fashion in secondary transplantation recipients. Splenectomy resulted in a dramatic enhancement of G-CSF-induced mobilization while decreasing both plerixafor- and BIO5192-induced mobilization of HSPCs. These data provide evidence for the utility of small molecule inhibitors of VLA-4 either alone or in combination with G-CSF or AMD3100 for mobilization of hematopoietic stem and progenitor cells.


PLOS ONE | 2012

Hypothesis testing and power calculations for taxonomic-based human microbiome data.

Patricio S. La Rosa; J. Paul Brooks; Elena Deych; Edward L. Boone; David J. Edwards; Qin Wang; Erica Sodergren; George M. Weinstock; William D. Shannon

This paper presents new biostatistical methods for the analysis of microbiome data based on a fully parametric approach using all the data. The Dirichlet-multinomial distribution allows the analyst to calculate power and sample sizes for experimental design, perform tests of hypotheses (e.g., compare microbiomes across groups), and to estimate parameters describing microbiome properties. The use of a fully parametric model for these data has the benefit over alternative non-parametric approaches such as bootstrapping and permutation testing, in that this model is able to retain more information contained in the data. This paper details the statistical approaches for several tests of hypothesis and power/sample size calculations, and applies them for illustration to taxonomic abundance distribution and rank abundance distribution data using HMP Jumpstart data on 24 subjects for saliva, subgingival, and supragingival samples. Software for running these analyses is available.


Clinical Infectious Diseases | 2013

Markers of Intestinal Inflammation, not Bacterial Burden, Correlate with Clinical Outcomes in Clostridium difficile Infection

Rana E. El Feghaly; Jennifer Stauber; Elena Deych; Carlos Gonzalez; Phillip I. Tarr; David B. Haslam

BACKGROUND Clostridium difficile is a leading hospital-acquired infection. Many patients remain symptomatic for several days on appropriate antibiotic therapy. To assess the contribution of ongoing infection vs persistent inflammation, we examined the correlation between fecal cytokine levels, fecal C. difficile burden, and disease outcomes in C. difficile infection (CDI). METHODS We conducted a prospective cohort study in Barnes Jewish Hospital between June 2011 and May 2012 of hospitalized adults with CDI. We determined fecal interleukin 8 (IL-8) and lactoferrin protein concentrations by enzyme immunoassay. We used real-time polymerase chain reaction (PCR) to measure relative fecal IL-8 and CXCL-5 RNA transcript abundances, and quantitative PCR to enumerate C. difficile burden. RESULTS Of 120 study subjects, 101 (84%) were started on metronidazole, and 33 of those (33%) were subsequently given vancomycin. Sixty-two (52%) patients had diarrhea persistent for 5 or more days after starting CDI therapy. Initial fecal CXCL-5 messenger RNA (mRNA), IL-8 mRNA, and IL-8 protein correlated with persistent diarrhea and use of vancomycin. Time to diarrhea resolution was longer in patients with elevated fecal cytokines at diagnosis. Fecal cytokines were more sensitive than clinical severity scores in identifying patients at risk of treatment failure. Clostridium difficile burden did not correlate with any measure of illness or outcome at any point, and decreased equally with metronidazole and vancomycin. CONCLUSIONS Persistent diarrhea in CDI correlates with intestinal inflammation and not fecal pathogen burden. These findings suggest that modulation of host response, rather than adjustments to antimicrobial regimens, might be a more effective approach to patients with unremitting disease.


Journal of Periodontology | 2011

One-Year Effects of Vitamin D and Calcium Supplementation on Chronic Periodontitis

M. Nathalia Garcia; Charles F. Hildebolt; D. Douglas Miley; Debra A. Dixon; Rex A. Couture; Catherine Anderson Spearie; Eric M. Langenwalter; William D. Shannon; Elena Deych; Cheryl Mueller; Roberto Civitelli

BACKGROUND A previous study reported by this group found that patients in periodontal maintenance programs taking vitamin D and calcium supplementation had a trend for better periodontal health compared to patients not taking supplementation. The objective of the present study is to determine, for the same cohort of subjects, whether such differences persist over a 1-year period. METHODS Fifty-one patients enrolled in maintenance programs from two dental clinics were recruited. Of these, 23 were taking vitamin D (≥400 IU/day) and calcium (≥1,000 mg/day) supplementation, and 28 were not. All subjects had at least two interproximal sites with ≥3 mm clinical attachment loss. For mandibular-posterior teeth, gingival index, plaque index, probing depth, attachment loss, bleeding on probing, calculus index, and furcation involvement were evaluated. Photostimulable-phosphor, posterior bitewing radiographs were taken to assess alveolar bone. Daily vitamin D and calcium intakes were estimated by nutritional analysis. Data were collected at baseline, 6 months, and 12 months. RESULTS Total daily calcium and vitamin D intakes were 1,769 mg (95% confidence interval, 1,606 to 1,933) and 1,049 IU (781 to 1,317) in the taker group, and 642 mg (505 to 779) and 156 IU (117 to 195) in the non-taker group, respectively (P <0.001 for both). Clinical parameters of periodontal health improved with time in both groups (P <0.001). When clinical measures were considered collectively, the differences between supplement takers and non-takers had the following P values: baseline (P = 0.061); 6 months (P = 0.049); and 12 months (P = 0.114). After adjusting for covariates, the P values for the effect of supplementation were as follows: baseline (P = 0.028); 6 months (P = 0.034); and 12 months (P = 0.058). CONCLUSIONS Calcium and vitamin D supplementation (≤1,000 IU/day) had a modest positive effect on periodontal health, and consistent dental care improved clinical parameters of periodontal disease regardless of such supplements. Our findings support the possibility that vitamin D may positively impact periodontal health and confirm the need for randomized clinical trials on the effects of vitamin D on periodontitis.


Journal of Thrombosis and Haemostasis | 2008

Laboratory and Clinical Outcomes of Pharmacogenetic vs. Clinical Protocols for Warfarin Initiation in Orthopedic Patients

Petra Lenzini; Gloria R. Grice; Paul E. Milligan; Mary Beth Dowd; Sumeet Subherwal; Elena Deych; Charles S. Eby; Cristi R. King; Rhonda Porche-Sorbet; Claire V. Murphy; Renee Marchand; Eric A. Millican; Robert L. Barrack; John C. Clohisy; Kathryn Kronquist; Susan K. Gatchel; Brian F. Gage

Summary.  Background: Warfarin is commonly prescribed for prophylaxis and treatment of thromboembolism after orthopedic surgery. During warfarin initiation, out‐of‐range International Normalized Ratio (INR) values and adverse events are common. Methods: In orthopedic patients beginning warfarin therapy, we developed and prospectively validated pharmacogenetic and clinical dose refinement algorithms to revise the estimated therapeutic dose after 4 days of therapy. Results: The pharmacogenetic algorithm used the cytochrome P450 (CYP) 2C9 genotype, smoking status, peri‐operative blood loss, liver disease, INR values and dose history to predict the therapeutic dose. The R2 was 82% in a derivation cohort (n = 86) and 70% when used prospectively (n = 146). The R2 of the clinical algorithm that used INR values and dose history to predict the therapeutic dose was 57% in a derivation cohort (n = 178) and 48% in a prospective validation cohort (n = 146). In 1 month of prospective follow‐up, the percent time spent in the therapeutic range was 7% higher (95% CI: 2.7–11.7) in the pharmacogenetic cohort. The risk of a laboratory or clinical adverse event was also significantly reduced in the pharmacogenetic cohort (Hazard Ratio 0.54; 95% CI: 0.30–0.97). Conclusions: Warfarin dose adjustments that incorporate genotype and clinical variables available after four warfarin doses are accurate. In this non‐randomized, prospective study, pharmacogenetic dose refinements were associated with more time spent in the therapeutic range and fewer laboratory or clinical adverse events. To facilitate gene‐guided warfarin dosing we created a non‐profit website, http://www.WarfarinDosing.org.


Clinical Pharmacology & Therapeutics | 2010

A Polymorphism in the VKORC1 Regulator Calumenin Predicts Higher Warfarin Dose Requirements in African Americans

Deepak Voora; D C Koboldt; Cristi R. King; P A Lenzini; Charles S. Eby; Rhonda Porche-Sorbet; Elena Deych; M Crankshaw; Paul E. Milligan; Howard L. McLeod; Shitalben R. Patel; Larisa H. Cavallari; Paul M. Ridker; Gloria R. Grice; R D Miller; Brian F. Gage

Warfarin demonstrates a wide interindividual variability in response that is mediated partly by variants in cytochrome P450 2C9 (CYP2C9) and vitamin K 2,3‐epoxide reductase complex subunit 1 (VKORC1). It is not known whether variants in calumenin (CALU) (vitamin K reductase regulator) have an influence on warfarin dose requirements. We resequenced CALU regions in a discovery cohort of dose outliers: patients with high (>90th percentile, n = 55) or low (<10th percentile, n = 53) warfarin dose requirements (after accounting for known genetic and nongenetic variables). One CALU variant, rs339097, was associated with high doses (P = 0.01). We validated this variant as a predictor of higher warfarin doses in two replication cohorts: (i) 496 patients of mixed ethnicity and (ii) 194 African‐American patients. The G allele of rs339097 (the allele frequency was 0.14 in African Americans and 0.002 in Caucasians) was associated with the requirement for a 14.5% (SD ± 7%) higher therapeutic dose (P = 0.03) in the first replication cohort and a higher‐than‐predicted dose in the second replication cohort (allele frequency 0.14, one‐sided P = 0.03). CALU rs339097 A>G is associated with higher warfarin dose requirements, independent of known genetic and nongenetic predictors of warfarin dose in African Americans.


Journal of Thrombosis and Haemostasis | 2010

Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy

Nicholas Ferder; Charles S. Eby; Elena Deych; Jenine K. Harris; Paul M. Ridker; Paul E. Milligan; Samuel Z. Goldhaber; Cristi R. King; Tusar K. Giri; Howard L. McLeod; Robert J. Glynn; Brian F. Gage

Summary.  Background: CYP2C9 and VKORC1 genotypes predict therapeutic warfarin dose at initiation of therapy; however, the predictive ability of genetic information after a week or longer is unknown. Experts have hypothesized that genotype becomes irrelevant once international normalized ratio (INR) values are available because INR response reflects warfarin sensitivity. Methods: We genotyped the participants in the Prevention of Recurrent Venous Thromboembolism (PREVENT) trial, who had idiopathic venous thromboemboli and began low‐intensity warfarin (therapeutic INR 1.5–2.0) using a standard dosing protocol. To develop pharmacogenetic models, we quantified the effect of genotypes, clinical factors, previous doses and INR on therapeutic warfarin dose in the 223 PREVENT participants who were randomized to warfarin and achieved stable therapeutic INRs. Results: A pharmacogenetic model using data from day 0 (before therapy initiation) explained 54% of the variability in therapeutic dose (R2). The R2 increased to 68% at day 7, 75% at day 14, and 77% at day 21, because of increasing contributions from prior doses and INR response. Although CYP2C9 and VKORC1 genotypes were significant independent predictors of therapeutic dose at each weekly interval, the magnitude of their predictive ability diminished over time: partial R2 of genotype was 43% at day 0, 12% at day 7, 4% at day 14, and 1% at day 21. Conclusion: Over the first weeks of warfarin therapy, INR and prior dose become increasingly predictive of therapeutic dose, and genotype becomes less relevant. However, at day 7, genotype remains clinically relevant, accounting for 12% of therapeutic dose variability.

Collaboration


Dive into the Elena Deych's collaboration.

Top Co-Authors

Avatar

William D. Shannon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brian F. Gage

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles S. Eby

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul E. Milligan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gloria R. Grice

St. Louis College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar

George M. Weinstock

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Petra Lenzini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Sodergren

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John C. Clohisy

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge