Elena G. Bochukova
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena G. Bochukova.
Nature | 2010
Elena G. Bochukova; Ni Huang; Julia M. Keogh; Elana Henning; Carolin Purmann; Kasia Blaszczyk; Sadia Saeed; Julian Hamilton-Shield; Jill Clayton-Smith; Stephen O’Rahilly; I. Sadaf Farooqi
Obesity is a highly heritable and genetically heterogeneous disorder. Here we investigated the contribution of copy number variation to obesity in 300 Caucasian patients with severe early-onset obesity, 143 of whom also had developmental delay. Large (>500 kilobases), rare (<1%) deletions were significantly enriched in patients compared to 7,366 controls (P < 0.001). We identified several rare copy number variants that were recurrent in patients but absent or at much lower prevalence in controls. We identified five patients with overlapping deletions on chromosome 16p11.2 that were found in 2 out of 7,366 controls (P < 5 × 10-5). In three patients the deletion co-segregated with severe obesity. Two patients harboured a larger de novo 16p11.2 deletion, extending through a 593-kilobase region previously associated with autism and mental retardation; both of these patients had mild developmental delay in addition to severe obesity. In an independent sample of 1,062 patients with severe obesity alone, the smaller 16p11.2 deletion was found in an additional two patients. All 16p11.2 deletions encompass several genes but include SH2B1, which is known to be involved in leptin and insulin signalling. Deletion carriers exhibited hyperphagia and severe insulin resistance disproportionate for the degree of obesity. We show that copy number variation contributes significantly to the genetic architecture of human obesity.
Nature | 2010
Robin G. Walters; Sébastien Jacquemont; Armand Valsesia; A.J. de Smith; Danielle Martinet; Johanna C. Andersson; Mario Falchi; Fangfang Chen; Joris Andrieux; Stéphane Lobbens; Bruno Delobel; Fanny Stutzmann; J. S. El-Sayed Moustafa; Jean-Claude Chèvre; Cécile Lecoeur; Vincent Vatin; Sonia Bouquillon; Jessica L. Buxton; Odile Boute; M. Holder-Espinasse; Jean-Marie Cuisset; M.-P. Lemaitre; A.-E. Ambresin; A. Brioschi; M. Gaillard; V. Giusti; Florence Fellmann; Alessandra Ferrarini; Nouchine Hadjikhani; Dominique Campion
Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’ in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
The New England Journal of Medicine | 2012
Elena G. Bochukova; Nadia Schoenmakers; Maura Agostini; Erik Schoenmakers; Odelia Rajanayagam; Julia M. Keogh; Elana Henning; Reinemund J; Evelien F. Gevers; Sarri M; Downes K; Amaka C. Offiah; Albanese A; David J. Halsall; John W. R. Schwabe; Bain M; Keith J. Lindley; Francesco Muntoni; Faraneh Vargha-Khadem; Mehul T. Dattani; Farooqi Is; Mark Gurnell; Krishna Chatterjee
Thyroid hormones exert their effects through alpha (TRα1) and beta (TRβ1 and TRβ2) receptors. Here we describe a child with classic features of hypothyroidism (growth retardation, developmental retardation, skeletal dysplasia, and severe constipation) but only borderline-abnormal thyroid hormone levels. Using whole-exome sequencing, we identified a de novo heterozygous nonsense mutation in a gene encoding thyroid hormone receptor alpha (THRA) and generating a mutant protein that inhibits wild-type receptor action in a dominant negative manner. Our observations are consistent with defective human TRα-mediated thyroid hormone resistance and substantiate the concept of hormone action through distinct receptor subtypes in different target tissues.
Nature Genetics | 2013
Elena Azizan; Hanne Poulsen; P. Tuluc; Junhua Zhou; Michael Voldsgaard Clausen; A. Lieb; Carmela Maniero; Sumedha Garg; Elena G. Bochukova; Wanfeng Zhao; Lalarukh Haris Shaikh; C.A. Brighton; Ada Ee Der Teo; Anthony P. Davenport; T. Dekkers; Bastiaan Tops; Benno Küsters; Jiri Ceral; Giles S. H. Yeo; S.G. Neogi; Ian G. McFarlane; Nitzan Rosenfeld; Francesco Marass; James Hadfield; W. Margas; K. Chaggar; Miroslav Solar; J. Deinum; Annette C. Dolphin; Farooqi Is
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in a subset of APAs resembling the aldosterone-secreting cells of the adrenal zona glomerulosa. We performed exome sequencing of ten zona glomerulosa–like APAs and identified nine with somatic mutations in either ATP1A1, encoding the Na+/K+ ATPase α1 subunit, or CACNA1D, encoding Cav1.3. The ATP1A1 mutations all caused inward leak currents under physiological conditions, and the CACNA1D mutations induced a shift of voltage-dependent gating to more negative voltages, suppressed inactivation or increased currents. Many APAs with these mutations were <1 cm in diameter and had been overlooked on conventional adrenal imaging. Recognition of the distinct genotype and phenotype for this subset of APAs could facilitate diagnosis.
Nature Genetics | 2013
Eleanor Wheeler; Ni Huang; Elena G. Bochukova; Julia M. Keogh; Sarah J. Lindsay; Sumedha Garg; Elana Henning; Hannah Blackburn; Ruth J. F. Loos; Nicholas J. Wareham; Stephen O'Rahilly; Inês Barroso; I. Sadaf Farooqi
Common and rare variants associated with body mass index (BMI) and obesity account for <5% of the variance in BMI. We performed SNP and copy number variation (CNV) association analyses in 1,509 children with obesity at the extreme tail (>3 s.d. from the mean) of the BMI distribution and 5,380 controls. Evaluation of 29 SNPs (P < 1 × 10−5) in an additional 971 severely obese children and 1,990 controls identified 4 new loci associated with severe obesity (LEPR, PRKCH, PACS1 and RMST). A previously reported 43-kb deletion at the NEGR1 locus was significantly associated with severe obesity (P = 6.6 × 10−7). However, this signal was entirely driven by a flanking 8-kb deletion; absence of this deletion increased risk for obesity (P = 6.1 × 10−11). We found a significant burden of rare, single CNVs in severely obese cases (P < 0.0001). Integrative gene network pathway analysis of rare deletions indicated enrichment of genes affecting G protein–coupled receptors (GPCRs) involved in the neuronal regulation of energy homeostasis.
Cell | 2013
Laura R. Pearce; Neli Atanassova; Matthew C. Banton; Bill Bottomley; Agatha A. van der Klaauw; Jean-Pierre Revelli; Audrey E. Hendricks; Julia M. Keogh; Elana Henning; Deon Doree; Sabrina Jeter-Jones; Sumedha Garg; Elena G. Bochukova; Rebecca Bounds; Sofie Ashford; Emma Gayton; Peter C. Hindmarsh; Julian Shield; Elizabeth Crowne; David Barford; Nicholas J. Wareham; Stephen O’Rahilly; Michael P. Murphy; David R. Powell; Inês Barroso; I. Sadaf Farooqi
Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick
American Journal of Human Genetics | 2000
Andrea H. Németh; Elena G. Bochukova; Eimear Dunne; Susan M. Huson; John S. Elston; Mohammed A. Hannan; Matthew Jackson; Cyril J. Chapman; A. Malcolm R. Taylor
Ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome [AOA]; MIM 208920) is an autosomal recessive disorder characterized by ataxia, oculomotor apraxia, and choreoathetosis. These neurological features resemble those of ataxia-telangiectasia (AT), but in AOA there are none of the extraneurological features of AT, such as immunodeficiency, neoplasia, chromosomal instability, or sensitivity to ionizing radiation. It is unclear whether these patients have a true disorder of chromosomal instability or a primary neurodegenerative syndrome, and it has not been possible to identify the defective gene in AOA, since the families have been too small for linkage analysis. We have identified a new family with AOA, and we show that the patients have no evidence of chromosomal instability or sensitivity to ionizing radiation, suggesting that AOA in this family is a true primary cerebellar ataxia. We have localized the disease gene, by linkage analysis and homozygosity mapping, to a 15.9-cM interval on chromosome 9q34. This work will ultimately allow the disease gene to be identified and its relevance to other types of autosomal recessive cerebellar ataxias to be determined.
Journal of Clinical Investigation | 2012
Michael E. Doche; Elena G. Bochukova; Hsiao-Wen Su; Laura R. Pearce; Julia M. Keogh; Elana Henning; Joel M. Cline; Anne Dale; Tim Cheetham; Inês Barroso; Lawrence S. Argetsinger; Stephen O’Rahilly; Liangyou Rui; Christin Carter-Su; I. Sadaf Farooqi
Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.
Journal of Clinical Investigation | 2013
Shwetha Ramachandrappa; Anne Raimondo; Anna M.G. Cali; Julia M. Keogh; Elana Henning; Sadia Saeed; Amanda Thompson; Sumedha Garg; Elena G. Bochukova; Soren Brage; Victoria M. Trowse; Eleanor Wheeler; Adrienne E. Sullivan; Mehul T. Dattani; Peter Clayton; Vippan Datta; John B. Bruning; Nicholas J. Wareham; Stephen O’Rahilly; Daniel J. Peet; Inês Barroso; Murray L. Whitelaw; I. Sadaf Farooqi
Single-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls. Thirteen different heterozygous variants in SIM1 were identified in 28 unrelated severely obese patients. Nine of the 13 variants significantly reduced the ability of SIM1 to activate a SIM1-responsive reporter gene when studied in stably transfected cells coexpressing the heterodimeric partners of SIM1 (ARNT or ARNT2). SIM1 variants with reduced activity cosegregated with obesity in extended family studies with variable penetrance. We studied the phenotype of patients carrying variants that exhibited reduced activity in vitro. Variant carriers exhibited increased ad libitum food intake at a test meal, normal basal metabolic rate, and evidence of autonomic dysfunction. Eleven of the 13 probands had evidence of a neurobehavioral phenotype. The phenotypic similarities between patients with SIM1 deficiency and melanocortin 4 receptor (MC4R) deficiency suggest that some of the effects of SIM1 deficiency on energy homeostasis are mediated by altered melanocortin signaling.
American Journal of Medical Genetics Part A | 2006
Andrew O.M. Wilkie; Elena G. Bochukova; Ruth M. S. Hansen; Indira B. Taylor; Sahan V. Rannan-Eliya; Jo C. Byren; Steven A. Wall; Lina Ramos; Margarida Venâncio; Jane A. Hurst; Anthony W. O'Rourke; Louise J. Williams; Anneke Seller; Tracy Lester
A dozen years have passed since the first genetic lesion was identified in a family with craniosynostosis, the premature fusion of the cranial sutures. Subsequently, mutations in the FGFR2, FGFR3, TWIST1, and EFNB1 genes have been shown to account for ∼25% of craniosynostosis, whilst several additional genes make minor contributions. Using specific examples, we show how these discoveries have enabled refinement of information on diagnosis, recurrence risk, prognosis for mental development, and surgical planning. However, phenotypic variability can present a significant challenge to the clinical interpretation of molecular genetic tests. In particular, the difficulty of analyzing the complex interaction of genetic background and prenatal environment in determining clinical features, limits the value of identifying low penetrance mutations.