Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Herrera-Carrillo is active.

Publication


Featured researches published by Elena Herrera-Carrillo.


RNA | 2014

Probing the shRNA characteristics that hinder Dicer recognition and consequently allow Ago-mediated processing and AgoshRNA activity

Elena Herrera-Carrillo; Alex Harwig; Ying Poi Liu; Ben Berkhout

Recent evidence indicates the presence of alternative pathways for microRNA (miRNA) and short hairpin (shRNA) processing. Specifically, some of these molecules are refractory to Dicer-mediated processing, which allows alternative processing routes via the Ago2 endonuclease. The resulting RNA molecules differ in size and sequence and will thus trigger the silencing of different target RNAs. It is, therefore, important to understand these processing routes in mechanistic detail such that one can design exclusive RNA reagents for a specific processing route. The exact sh/miRNA properties that determine this routing toward Dicer or Ago2 are incompletely understood. The size of the base-paired stem seems an important determinant, but other RNA elements may contribute as well. In this study, we document the importance of a weak G-U or U-G base pair at the top of the hairpin stem.


Viruses | 2015

Bone Marrow Gene Therapy for HIV/AIDS

Elena Herrera-Carrillo; Ben Berkhout

Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.


RNA Biology | 2015

Mechanistic insights on the Dicer-independent AGO2-mediated processing of AgoshRNAs.

Ying Poi Liu; Margarete Karg; Alex Harwig; Elena Herrera-Carrillo; Aldo Jongejan; Antoine H. C. van Kampen; Ben Berkhout

Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism, both for research and therapeutic purposes. The shRNA precursor is processed by the RNase III-like enzyme Dicer into biologically active small interfering RNA (siRNA). This effector molecule subsequently targets a complementary mRNA for destruction via the Argonaute 2 (AGO2) complex. The cellular role of Dicer concerns the processing of pre-miRNAs into mature microRNA (miRNA). Recently, a non-canonical pathway was reported for the biogenesis of miR-451, which bypasses Dicer and is processed instead by the slicer activity of AGO2, followed by the regular AGO2-mediated mRNA targeting step. Interestingly, shRNA designs that are characterized by a relatively short basepaired stem also bypass Dicer to be processed by AGO2. We named this design AgoshRNA as these molecules depend on AGO2 both for processing and silencing activity. In this study, we investigated diverse mechanistic aspects of this new class of AgoshRNA molecules. We probed the requirements for AGO2-mediated processing of AgoshRNAs by modification of the proposed cleavage site in the hairpin. We demonstrate by deep sequencing that AGO2-processed AgoshRNAs produce RNA effector molecules with more discrete ends than the products of the regular shRNA design. Furthermore, we tested whether trimming and tailing occurs upon AGO2-mediated processing of AgoshRNAs, similar to what has been described for miR-451. Finally, we tested the prediction that AgoshRNA activity, unlike that of regular shRNAs, is maintained in Dicer-deficient cell types. These mechanistic insights could aid in the design of optimised AgoshRNA tools and therapeutics.


Molecular Therapy | 2014

The Impact of Unprotected T Cells in RNAi-based Gene Therapy for HIV-AIDS

Elena Herrera-Carrillo; Ying Poi Liu; Ben Berkhout

RNA interference (RNAi) is highly effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication by the expression of antiviral short hairpin RNA (shRNA) in stably transduced T-cell lines. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against highly conserved regions of the HIV-1 RNA genome. The future in vivo application of such a gene therapy protocol will reach only a fraction of the T cells, such that HIV-1 replication will continue in the unmodified T cells, thereby possibly frustrating the therapy by generation of HIV-1 variants that escape from the inhibition imposed by the protected cells. We studied virus inhibition and evolution in pure cultures of shRNA-expressing cells versus mixed cell cultures of protected and unprotected T cells. The addition of the unprotected T cells indeed seems to accelerate HIV-1 evolution and escape from a single shRNA inhibitor. However, expression of three antiviral shRNAs from a single lentiviral vector prevents virus escape even in the presence of unprotected cells. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.


RNA Biology | 2015

Toward optimization of AgoshRNA molecules that use a non-canonical RNAi pathway: variations in the top and bottom base pairs.

Elena Herrera-Carrillo; Alex Harwig; Ben Berkhout

Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism. The shRNA precursor is processed by Dicer into small interfering RNAs (siRNAs) and subsequently programs the RNAi-induced silencing complex (RISC) to find a complementary target mRNA (mRNA) for post-transcriptional gene silencing. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer to be processed directly by the Ago2 nuclease of the RISC complex. We named this design AgoshRNA as these molecules depend on Ago2 both for processing and subsequent silencing activity. This alternative AgoshRNA processing route yields only a single active RNA strand, an important feature to restrict off-target effects induced by the passenger strand of regular shRNAs. It is therefore important to understand this novel AgoshRNA processing route in mechanistic detail such that one can design the most effective and selective RNA reagents. We performed a systematic analysis of the optimal base pair (bp) composition at the top and bottom of AgoshRNA molecules. In this study, we document the importance of the 5′ end nucleotide (nt) and a bottom mismatch. The optimized AgoshRNA design exhibits improved RNAi activity across cell types. These results have important implications for the future design of more specific RNAi therapeutics.


Biochemical Society Transactions | 2016

Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas

Elena Herrera-Carrillo; Ben Berkhout

Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.


PLOS ONE | 2015

Towards Antiviral shRNAs Based on the AgoshRNA Design

Ying Poi Liu; Margarete Karg; Elena Herrera-Carrillo; Ben Berkhout

RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these “AgoshRNA” molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.


Expert Opinion on Therapeutic Targets | 2015

Potential mechanisms for cell-based gene therapy to treat HIV/AIDS

Elena Herrera-Carrillo; Ben Berkhout

Introduction: An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. Areas covered: In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. Expert opinion: Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.


Transcription | 2017

Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and start site usage

Zongliang Gao; Alex Harwig; Ben Berkhout; Elena Herrera-Carrillo

ABSTRACT Type 3 RNA polymerase III (Pol III) promoters are widely used for the expression of small RNAs such as short hairpin RNA and guide RNA in the popular RNAi and CRISPR-Cas gene regulation systems. Although it is generally believed that type 3 Pol III promoters use a defined transcription start site (+1 position), most man-made promoter constructs contain local sequence alterations of which the impact on transcription efficiency and initiation accuracy is not known. For three human type 3 Pol III promoters (7SK, U6, and H1), we demonstrated that the nucleotides around the +1 position affect both the transcriptional efficiency and start site selection. Human 7SK and U6 promoters with A or G at the +1 position efficiently produced small RNAs with a precise +1 start site. The human H1 promoter with +1A or G also efficiently produced small RNAs but from multiple start sites in the −3/−1 window. These results provide new insights for the design of vectors for accurate expression of designed small RNAs for research and therapeutic purposes.


Nucleic Acids Research | 2017

The influence of the 5′-terminal nucleotide on AgoshRNA activity and biogenesis: importance of the polymerase III transcription initiation site

Elena Herrera-Carrillo; Zongliang Gao; Alex Harwig; Matthias T. Heemskerk; Ben Berkhout

Abstract Recent evidence indicates that shRNAs with a relatively short basepaired stem do not require Dicer processing, but instead are processed by the Argonaute 2 protein (Ago2). We named these molecules AgoshRNAs as both their processing and silencing function are mediated by Ago2. This alternative processing yields only a single RNA guide strand, which can avoid off-target effects induced by the passenger strand of regular shRNAs. It is important to understand this alternative processing route in mechanistic detail such that one can design improved RNA reagents. We verified that AgoshRNAs trigger site-specific cleavage of a complementary mRNA. Second, we document the importance of the identity of the 5΄-terminal nucleotide and its basepairing status for AgoshRNA activity. AgoshRNA activity is significantly reduced or even abrogated with C or U at the 5΄-terminal and is enhanced by introduction of a bottom mismatch and 5΄-terminal nucleotide A or G. The 5΄-terminal RNA nucleotide also represents the +1 position of the transcriptional promoter in the DNA, thus further complicating the analysis. Indeed, we report that +1 modification affects the transcriptional efficiency and accuracy of start site selection, with A or G as optimal nucleotide. These combined results allow us to propose general rules for the design and expression of potent AgoshRNA molecules.

Collaboration


Dive into the Elena Herrera-Carrillo's collaboration.

Top Co-Authors

Avatar

Ben Berkhout

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Alex Harwig

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Ying Poi Liu

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge