Elena Llano
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Llano.
Journal of Biological Chemistry | 1997
Alberto M. Pendás; Vera Knäuper; Xose S. Puente; Elena Llano; M. G. Mattei; Suneel S. Apte; Gillian Murphy; Carlos López-Otín
We have cloned a novel member of the matrix metalloproteinase (MMP) family of proteins from a human liver cDNA library. The isolated cDNA contains an open reading frame coding for a polypeptide of 508 amino acids, which has been tentatively called MMP-19. This protein exhibits the domain structure characteristic of previously described MMPs, including a signal sequence, a prodomain with the cysteine residue essential for maintaining the latency of these enzymes, an activation locus with the zinc-binding site, and a COOH-terminal fragment with sequence similarity to hemopexin. However, it lacks a series of structural features distinctive of the diverse MMP subclasses, including the Asp, Tyr, and Gly residues located close to the zinc-binding site in collagenases, the fibronectin-like domain of gelatinases, the transmembrane domain of membrane-type (MT) MMPs, and the furin-activation sequence common to stromelysin-3 and MT-MMPs. In addition, the 9-residue insertion rich in hydrophobic amino acids present at the hinge region in stromelysins is replaced in MMP-19 by a longer insertion very rich in acidic residues. On the basis of these structural characteristics, we propose that MMP-19 does not belong to any of the previously defined MMP-subclasses and may represent the first member of a new MMP subfamily. Chromosomal location of the MMP-19 gene revealed that it maps to chromosome 12q14, which is also a unique location for any MMPs mapped to date. The cDNA encoding a full-length MMP-19 was expressed in Escherichia coli, and after purification and refolding, the recombinant protein was able to degrade synthetic substrates for MMPs. MMP-19 proteolytic activity was abolished by TIMP-2 and EDTA, thus providing additional evidence that the isolated cDNA codes for an authentic MMP. Northern blot analysis of polyadenylated RNAs isolated from a variety of human tissues revealed that MMP-19 is mainly expressed in placenta, lung, pancreas, ovary, spleen, and intestine, suggesting that it may play a specialized role in these tissues.
Journal of Biological Chemistry | 2000
Elena Llano; Alberto M. Pendás; Pedro Aza-Blanc; Thomas B. Kornberg; Carlos López-Otín
We have cloned and characterized a cDNA encoding Dm1-MMP, the first matrix metalloproteinase (MMP) identified in Drosophila melanogaster. The isolated cDNA encodes a protein of 541 residues that has a domain organization identical to that of most vertebrate MMPs including a signal sequence, a prodomain with the activation locus, a catalytic domain with a zinc-binding site, and a COOH-terminal hemopexin domain. Northern blot analysis of Dm1-MMP expression in embryonic and larval adult tissues revealed a strong expression level in the developing embryo at 10–22 h, declining thereafter and being undetectable in adults. Western blot analysis confirmed the presence of pro- and active forms of Dm1-MMP in vivo during larval development. In situ hybridization experiments demonstrated that Dm1-MMP is expressed in a segmented pattern in cell clusters at the midline during embryonic stage 12–13, when neurons of the central nervous system start to arise. RecombinantDm1-MMP produced in Escherichia coli exhibits a potent proteolytic activity against synthetic peptides used for analysis of vertebrate MMPs. This activity is inhibited by tissue inhibitors of metalloproteinases and by synthetic MMP inhibitors such as BB-94. Furthermore, Dm1-MMP is able to degrade the extracellular matrix and basement membrane proteins fibronectin and type IV collagen. On the basis of these data, together with the predominant expression of Dm1-MMP in embryonic neural cells, we propose that this enzyme may be involved in the extracellular matrix remodeling taking place during the development of the central nervous system in Drosophila.
FEBS Letters | 2000
Jan O. Stracke; Amanda J. Fosang; Francesca A. Mercuri; Alberto M. Pendás; Elena Llano; Roberto Perris; Paul E. Di Cesare; Gillian Murphy; Vera Knäuper
Matrix metalloproteinase (MMP)‐19 and MMP‐20 (enamelysin) are two recently discovered members of the MMP family. These enzymes are involved in the degradation of the various components of the extracellular matrix (ECM) during development, haemostasis and pathological conditions. Whereas MMP‐19 mRNA is found widely expressed in body tissues, including the synovium of normal and rheumatoid arthritic patients, MMP‐20 expression is restricted to the enamel organ. In this study we investigated the ability of MMP‐19 and MMP‐20 to cleave two of the macromolecules characterising the cartilage ECM, namely aggrecan and the cartilage oligomeric matrix protein (COMP). Both MMPs hydrolysed aggrecan efficiently at the well‐described MMP cleavage site between residues Asn341 and Phe342, as shown by Western blotting using neo‐epitope antibodies. Furthermore, the two enzymes cleaved COMP in a distinctive manner, generating a major proteolytic product of 60 kDa. Our results suggest that MMP‐19 may participate in the degradation of aggrecan and COMP in arthritic disease, whereas MMP‐20, due to its unique expression pattern, may primarily be involved in the turnover of these molecules during tooth development.
Genes & Development | 2008
Elena Llano; Rocío Gómez; Cristina Gutiérrez-Caballero; Yurema Herrán; Manuel Sánchez-Martín; Luis Vázquez-Quiñones; Teresa Hernández; Enrique de Alava; Ana Cuadrado; José Luis Barbero; José A. Suja; Alberto M. Pendás
Shugoshin-2 (SGOL2) is one of the two mammalian orthologs of the Shugoshin/Mei-S322 family of proteins that regulate sister chromatid cohesion by protecting the integrity of the multiprotein cohesin complexes. This protective system is essential for faithful chromosome segregation during mitosis and meiosis, which is the physical basis of Mendelian inheritance. Regardless of its evolutionary conservation from yeast to mammals, little is known about the in vivo relevance and specific role that SGOL2 plays in mammals. Here we show that disruption of the gene encoding mouse SGOL2 does not cause any alteration in sister chromatid cohesion in embryonic cultured fibroblasts and adult somatic tissues. Moreover, mutant mice develop normally and survive to adulthood without any apparent alteration. However, both male and female Sgol2-deficient mice are infertile. We demonstrate that SGOL2 is necessary for protecting centromeric cohesion during mammalian meiosis I. In vivo, the loss of SGOL2 promotes a premature release of the meiosis-specific REC8 cohesin complexes from anaphase I centromeres. This molecular alteration is manifested cytologically by the complete loss of centromere cohesion at metaphase II leading to single chromatids and physiologically with the formation of aneuploid gametes that give rise to infertility.
The New England Journal of Medicine | 2014
Sandrine Caburet; Valerie A. Arboleda; Elena Llano; Paul A. Overbeek; José Luis Barbero; Kazuhiro Oka; Wilbur R. Harrison; Daniel Vaiman; Ziva Ben-Neriah; Ignacio García-Tuñón; Marc Fellous; Alberto M. Pendás; Reiner A. Veitia; Eric Vilain
Premature ovarian failure is a major cause of female infertility. The genetic causes of this disorder remain unknown in most patients. Using whole-exome sequence analysis of a large consanguineous family with inherited premature ovarian failure, we identified a homozygous 1-bp deletion inducing a frameshift mutation in STAG3 on chromosome 7. STAG3 encodes a meiosis-specific subunit of the cohesin ring, which ensures correct sister chromatid cohesion. Female mice devoid of Stag3 are sterile, and their fetal oocytes are arrested at early prophase I, leading to oocyte depletion at 1 week of age.
Journal of Biological Chemistry | 2002
Elena Llano; Géza Ádám; Alberto M. Pendás; Víctor Quesada; Luis M. Sánchez; Íñigo Santamaría; Stéphane Noselli; Carlos López-Otín
We report the isolation and characterization of a cDNA encoding Dm2-MMP, the second matrix metalloproteinase (MMP) identified in the Drosophila melanogaster genome. The cloned cDNA codes for a polypeptide of 758 residues that displays a domain organization similar to that of other MMPs, including signal peptide, propeptide, catalytic, and hemopexin domains. However, the structure of Dm2-MMP is unique because of the presence of an insertion of 214 amino acids between the catalytic and hemopexin domains that is not present in any of the previously described MMPs. Dm2-MMP also contains a C-terminal extension predicted to form a cleavable glycosylphosphatidylinositol anchor site. Western blot and immunofluorescence analysis of S2 cells transfected with the isolated cDNA confirmed that Dm2-MMP is localized at the cell surface. Production of the catalytic domain of Dm2-MMP inEscherichia coli and analysis of its enzymatic activity revealed that this proteinase cleaves several synthetic peptides used for analysis of vertebrate MMPs. This proteolytic activity was abolished by MMP inhibitors such as BB-94, confirming that the isolated cDNA codes for an enzymatically active metalloproteinase. Reverse transcription-PCR analysis showed thatDm2-MMP is expressed at low levels in all of the developmental stages of Drosophila as well as in adult flies. However, detailed in situ hybridization at the larval stage revealed a strong tissue-specific expression in discrete regions of the brain and eye imaginal discs. According to these results, we propose that Dm2-MMP plays both general proteolytic functions during Drosophila development and in adult tissues and specific roles in eye development and neural tissues through the degradation and remodeling of the extracellular matrix.
The EMBO Journal | 2011
Yurema Herrán; Cristina Gutiérrez-Caballero; Manuel Sánchez-Martín; Teresa Hernández; Alberto Viera; José Luis Barbero; Enrique de Alava; Dirk G. de Rooij; José A. Suja; Elena Llano; Alberto M. Pendás
The cohesin complex is a ring‐shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α‐kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α‐kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L‐deficient females are fertile but develop an age‐dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural aging.
Molecular and Cellular Biology | 2004
Alberto M. Pendás; Alicia R. Folgueras; Elena Llano; John J. Caterina; Françoise Frerard; Francisco Rodríguez; Aurora Astudillo; Agnès Noël; Henning Birkedal-Hansen; Carlos López-Otín
ABSTRACT Matrix metalloproteinase 19 (MMP-19) is a member of the MMP family of endopeptidases that, in contrast to most MMPs, is widely expressed in human tissues under normal quiescent conditions. MMP-19 has been found to be associated with ovulation and angiogenic processes and is deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. To gain further insights into the in vivo functions of this protease, we have generated mutant mice deficient in Mmp19. These mice are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice develop a diet-induced obesity due to adipocyte hypertrophy and exhibit decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with adipogenesis, as well as in pathological processes such as tumor progression.
Journal of Cell Biology | 2012
Elena Llano; Yurema Herrán; Ignacio García-Tuñón; Cristina Gutiérrez-Caballero; Enrique de Alava; José Luis Barbero; John C. Schimenti; Dirk G. de Rooij; Manuel Sánchez-Martín; Alberto M. Pendás
Loss of both meiosis-specific kleisins in mice reveals conserved functions of the meiotic cohesin complexes in axial element formation during spermatogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Alicia R. Folgueras; Teresa Valdés-Sánchez; Elena Llano; Luis Menéndez; Ana Baamonde; Bristol L. Denlinger; Carlos Belmonte; Lucía Juárez; Ana Lastra; Olivia García-Suárez; Aurora Astudillo; Martina Kirstein; Alberto M. Pendás; Isabel Fariñas; Carlos López-Otín
Peripheral interactions between nociceptive fibers and mast cells contribute to inflammatory pain, but little is known about mechanisms mediating neuro-immune communication. Here we show that metalloproteinase MT5-MMP (MMP-24) is an essential mediator of peripheral thermal nociception and inflammatory hyperalgesia. We report that MT5-MMP is expressed by CGRP-containing peptidergic nociceptors in dorsal root ganglia and that Mmp24-deficient mice display enhanced sensitivity to noxious thermal stimuli under basal conditions. Consistently, mutant peptidergic sensory neurons hyperinnervate the skin, a phenotype that correlates with changes in the regulated cleavage of the cell-cell adhesion molecule N-cadherin. In contrast to basal nociception, Mmp24−/− mice do not develop thermal hyperalgesia during inflammation, a phenotype that appears associated with alterations in N-cadherin-mediated cell-cell interactions between mast cells and sensory fibers. Collectively, our findings demonstrate an essential role of MT5-MMP in the development of dermal neuro-immune synapses and suggest that this metalloproteinase may be a target for pain control.