Elena Longobardi
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Longobardi.
Molecular and Cellular Biology | 2006
Elisabetta Ferretti; J. Carlos Villaescusa; Patrizia Di Rosa; Luis C. Fernandez-Diaz; Elena Longobardi; Roberta Mazzieri; Annarita Miccio; Nicola Micali; Licia Selleri; Giuliana Ferrari; Francesco Blasi
ABSTRACT The interaction of Prep1 and Pbx homeodomain transcription factors regulates their activity, nuclear localization, and likely, function in development. To understand the in vivo role of Prep1, we have analyzed an embryonic lethal hypomorphic mutant mouse (Prep1i/i). Prep1i/i embryos die at embryonic day 17.5 (E17.5) to birth with an overall organ hypoplasia, severe anemia, impaired angiogenesis, and eye anomalies, particularly in the lens and retina. The anemia correlates with delayed differentiation of erythroid progenitors and may be, at least in part, responsible for intrauterine death. At E14.5, Prep1 is present in fetal liver (FL) cMyb-positive cells, whose deficiency causes a marked hematopoietic phenotype. Prep1 is also localized to FL endothelial progenitors, consistent with the observed angiogenic phenotype. Likewise, at the same gestational day, Prep1 is present in the eye cells that bear Pax6, implicated in eye development. The levels of cMyb and Pax6 in FL and in the retina, respectively, are significantly decreased in Prep1i/i embryos, consistent with the hematopoietic and eye phenotypes. Concomitantly, Prep1 deficiency results in the overall decrease of protein levels of its related family member Meis1 and its partners Pbx1 and Pbx2. As both Prep1 and Meis interact with Pbx, the overall Prep1/Meis-Pbx DNA-binding activity is strongly reduced in whole Prep1i/i embryos and their organs. Our data indicate that Prep1 is an essential gene that acts upstream of and within a Pbx-Meis network that regulates multiple aspects of embryonic development.
Molecular and Cellular Biology | 2005
Elisabetta Ferretti; Francisco Cambronero; Stefan Tümpel; Elena Longobardi; Leanne M. Wiedemann; Francesco Blasi; Robb Krumlauf
ABSTRACT The Hoxb1 autoregulatory enhancer directs segmental expression in vertebrate hindbrain. Three conserved repeats (R1, R2, and R3) in the enhancer have been described as Pbx-Hoxb1 (PH) binding sites, and one Pbx-Meinox (PM) binding site has also been characterized. We have investigated the importance and relative roles of PH and PM binding sites with respect to protein interactions and in vivo regulatory activity. We have identified a new PM site (PM2) and found that it cooperates with the R3 PH site to form ternary Prep1-Pbx1-Hoxb1 complexes. In vivo, the combination of the R3 and PM2 sites is sufficient to mediate transgenic reporter activity in the developing chick hindbrain. In both chicken and mouse transgenic embryos, mutations of the PM1 and PM2 sites reveal that they cooperate to modulate in vivo regulatory activity of the Hoxb1 enhancer. Furthermore, we have shown that the R2 motif functions as a strong PM site, with a high binding affinity for Prep1-Pbx1 dimers, and renamed this site R2/PM3. In vitro R2/PM3, when combined with the PM1 and R3 motifs, inhibits ternary complex formation mediated by these elements and in vivo reduces and restricts reporter expression in transgenic embryos. These inhibitory effects appear to be a consequence of the high PM binding activity of the R2/PM3 site. Taken together, our results demonstrate that the activity of the Hoxb1 autoregulatory enhancer depends upon multiple Prep1-Pbx1 (PM1, PM2, and PM3) and Pbx1-Hoxb1 (R1 and R3) binding sites that cooperate to modulate and spatially restrict the expression of Hoxb1 in r4 rhombomere.
Developmental Dynamics | 2014
Elena Longobardi; Dmitry Penkov; D. Mateos; G. De Florian; Miguel Torres; Francesco Blasi
TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub‐families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher‐order complexes, in particular HOX. Finally, recent advances in determining the genome‐wide DNA‐binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA‐binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions. Developmental Dynamics 243:59–75, 2014.
Molecular and Cellular Biology | 2007
Víctor M. Díaz; Silvia Mori; Elena Longobardi; Guillermo Menendez; Carmelo Ferrai; Rebecca A. Keough; Angela Bachi; Francesco Blasi
ABSTRACT Prep1 is known to interact in vivo with Pbx1 to regulate development and organogenesis. We have identified a novel Prep1-interacting protein, p160 c-Myb binding protein (p160). p160 and Pbx1 compete for Prep1 in vitro, and p160 inhibits Prep1-dependent HoxB2 expression in retinoic acid-treated NT2-D1 cells. The N-terminal physiologically truncated form of p160, p67, binds the sequence 63LFPLL67 in the HR1 domain of Prep1. Mutation of both L63 and L66 impairs the binding of Prep1 to both p160/p67 and Pbx1. The sequences required to bind Prep1 are mainly located in residues 51 to 151. Immunofluorescence colocalization and coimmunoprecipitation of endogenous p160 and Prep1 are induced by ActD, which translocates p160 from the nucleolus to the nucleoplasm. These data therefore show that p160 is a novel regulator of Prep1-Pbx1 transcriptional activity.
Journal of Biological Chemistry | 2003
Elena Longobardi; Francesco Blasi
To bind DNA and to be retained in the nucleus, PBX proteins must form heterodimeric complexes with members of the MEINOX family. Therefore the balance between PBX and MEINOX must be an important regulatory feature. We show that overexpression of PREP-1 influences the level of PBX-2 protein maintaining the PREP-1-PBX balance. This effect has important functional consequences. F9 teratocarcinoma cells stably transfected with PREP-1 had an increased DNA binding activity to a PREP-PBX-responsive element. Because PREP-1 binds DNA efficiently only when dimerized to PBX, the increased DNA binding activity suggests that the level of PBX might also have increased. Indeed PREP-1-overexpressing cells had a higher level of PBX-2 and PBX-1b proteins. PBX-2 increase did not depend on increased mRNA level or a higher rate of translation but rather because of a protein stabilization process. Indeed, PBX-2 level drastically decreased after 3 h of cycloheximide treatment in control but not in PREP-1-overexpressing cells and the proteasome inhibitor MG132 prevented PBX-2 decay in control cells. Hence, dimerization with PREP-1 appears to decrease proteasomal degradation of PBX-2. Retinoic acid induces differentiation of F9 teratocarcinoma cells with a cascade synthesis of HOX proteins. In PREP-1-overexpressing cells, HOXb1 induction was more sustained (3 days versus 1 day) and the induced level of MEIS-1b, another TALE (three amino acid loop extension) protein involved in embryonal development, was higher. Thus an increase in PREP-1 leads to changes in the fate-determining HOXb1 and has therefore important functional consequences.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Maurizio Risolino; Nadia Mandia; Francescopaolo Iavarone; Leila Dardaei; Elena Longobardi; Serena Fernandez; Francesco Talotta; Fabrizio Bianchi; Federica Pisati; Lorenzo Spaggiari; Patrick N. Harter; Michel Mittelbronn; Dorothea Schulte; Mariarosaria Incoronato; Pier Paolo Di Fiore; Francesco Blasi; Pasquale Verde
Significance Epithelial–mesenchymal transition (EMT) is a transdifferentiation program implicated in tumor cell dissemination, controlled by networks of transcription complexes responsive to paracrine factors, such as TGF-β. Pre–B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. PREP1 is a haploinsufficient oncosuppressor in mouse tumorigenesis. By characterizing PREP1 as a novel regulator of EMT in human lung adenocarcinoma, we show that PREP1 also harbors prometastatic properties. While autosustaining its activity by stabilizing its transcriptional partner PBX1, PREP1 modulates the responsiveness of lung cancer cells to TGF-β by controlling the expression of two proinvasive transcription factors (SMAD3 and Fos-related antigen 1) implicated in metastasis mechanisms. Thus, PREP1 represents a novel, promising therapeutic target in non-small cell lung cancer. Pre–B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial–mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-β. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-β. PREP1 modulates the cellular sensitivity to TGF-β by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-β pathway, EMT, and metastasis in NSCLC.
Development | 2010
Luis C. Fernandez-Diaz; Audrey Laurent; Sara Girasoli; Margherita Y. Turco; Elena Longobardi; Giorgio Iotti; Nancy A. Jenkins; Maria Teresa Fiorenza; Neal G. Copeland; Francesco Blasi
Disruption of mouse Prep1, which codes for a homeodomain transcription factor, leads to embryonic lethality during post-implantation stages. Prep1–/– embryos stop developing after implantation and before anterior visceral endoderm (AVE) formation. In Prep1–/– embryos at E6.5 (onset of gastrulation), the AVE is absent and the proliferating extra-embryonic ectoderm and epiblast, marked by Bmp4 and Oct4, respectively, are reduced in size. At E.7.5, Prep1–/– embryos are small and very delayed, showing no evidence of primitive streak or of differentiated embryonic lineages. Bmp4 is expressed residually, while the reduced number of Oct4-positive cells is constant up to E8.5. At E6.5, Prep1–/– embryos retain a normal mitotic index but show a major increase in cleaved caspase 3 and TUNEL staining, indicating apoptosis. Therefore, the mouse embryo requires Prep1 when undergoing maximal expansion in cell number. Indeed, the phenotype is partially rescued in a p53–/–, but not in a p16–/–, background. Apoptosis is probably due to DNA damage as Atm downregulation exacerbates the phenotype. Despite this early lethal phenotype, Prep1 is not essential for ES cell establishment. A differential embryonic expression pattern underscores the unique function of Prep1 within the Meis-Prep family.
Diabetes | 2011
Francesco Oriente; Salvatore Iovino; Serena Cabaro; Angela Cassese; Elena Longobardi; Claudia Miele; Paola Ungaro; Pietro Formisano; Francesco Blasi; Francesco Beguinot
OBJECTIVE We investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. RESEARCH DESIGN AND METHODS Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1i/i), which express 2–3% of Prep1 mRNA. RESULTS Based on euglycemic hyperinsulinemic clamp studies and measurement of glycogen content, livers from Prep1i/i mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and insulin receptor substrate (IRS)1/2 was significantly enhanced in Prep1i/i livers accompanied by a specific downregulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1, but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content, and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nucleotides −2,113 and −1,778. This fragment features enhancer activity and induces luciferase function by 7-, 6-, and 30-fold, respectively, in response to Prep1, Pbx1, or both. CONCLUSIONS SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage.
Molecular Oncology | 2010
Elena Longobardi; Giorgio Iotti; P. Di Rosa; S. Mejetta; Fabrizio Bianchi; Luis C. Fernandez-Diaz; Nicola Micali; Paolo Nuciforo; E. Lenti; M. Ponzoni; C. Doglioni; M. Caniatti; P. P. Di Fiore; Francesco Blasi
The Prep1 homeodomain transcription factor is essential for embryonic development. 25% of hypomorphic Prep1i/i embryos, expressing the gene at 2% of the normal levels, survive pregnancy and live a normal‐length life. Later in life, however, these mice develop spontaneous pre‐tumoral lesions or solid tumors (lymphomas and carcinomas). In addition, transplantation of E14.5 fetal liver (FL) Prep1i/i cells into lethally irradiated mice induces lymphomas. In agreement with the above data, haploinsufficiency of a different Prep1‐deficient (null) allele accelerates EμMyc lymphoma growth. Therefore Prep1 has a tumor suppressor function in mice.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Giorgio Iotti; Elena Longobardi; Silvia Masella; Leila Dardaei; Francesca De Santis; Nicola Micali; Francesco Blasi
Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1i/i fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1i/i MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1i/i MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogene-induced senescence, and H-RasV12–dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability.
Collaboration
Dive into the Elena Longobardi's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs