Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Ortega is active.

Publication


Featured researches published by Elena Ortega.


International Journal of Food Microbiology | 2008

Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples

Hikmate Abriouel; Nabil Ben Omar; Antonio Cobo Molinos; Rosario Lucas López; Ma José Grande; Pilar Martínez-Viedma; Elena Ortega; Magdalena Martínez Cañamero; Antonio Gálvez

A comparative study was carried out among enterococci isolated from fruits and vegetable foods, water and soil, and clinical samples. Results indicate strong differences in the numbers of enterococcal species found in different environments as well as their abundance. While Enterococcus faecalis was clearly the predominant species in clinical samples, Enterococcus faecium predominated in vegetables, and it slightly outnumbered E. faecalis in water samples. Other species (Enterococcus hirae, Enterococcus mundtii, Enterococcus durans, Enterococcus gallinarum and Enterococcus casseliflavus) were found more frequently in vegetables, water, and specially in soil. Isolates from vegetable foods showed a lower incidence of antibiotic resistance compared to clinical isolates for most antimicrobials tested, especially erythromycin, tetracycline, chloramphenicol, ciprofloxacin, levofloxacin, gentamicin and streptomycin for E. faecalis, and quinupristin/dalfopristin, ampicillin, penicillin, ciprofloxacin, levofloxacin, rifampicin, choramphenicol, gentamicin and nitrofurantoin for E. faecium. E. faecium isolates from vegetable foods and water showed an average lower number of antibiotic resistance traits (2.95 and 3.09 traits for vegetable and water isolates, respectively) compared to clinical samples (7.5 traits). Multi-resistant strains were also frequent among clinical E. faecalis isolates (5.46 traits on average). None of E. faecalis or E. faecium isolates from vegetable foods, water and soil showed beta-haemolytic activity, while 25.64% of clinical E. faecalis did. A 51.28% of E. faecalis clinical isolates tested positive for the cylA, cylB, cylM set of genes, while some or all of these genes were missing in the rest of isolates. In clinical E. faecalis and E. faecium isolates, the genetic determinants for the enterococcal surface protein gene (esp), the collagen adhesin gene (ace) and the sex pheromone gene ccf (as well as cob in E. faecalis) showed a clearly higher incidence compared to isolates from other sources. E. faecalis isolates from vegetable foods and water had much lower average numbers of virulence genetic determinants per strain (4.23 and 4.0, respectively) compared to clinical isolates (8.71). Similarly, among E. faecium the lowest average number of traits per strain occurred in vegetable food isolates (1.72) followed by water (3.9) and clinical isolates (4.73). Length heterogeneity (LH)-PCR typing with espF-aceF-ccfF and espF-ccfF primers revealed genomic groups that clearly differentiated clinical isolates from those of vegetable foods, water and soil (except for two clinical isolates). The large differences found in the incidence of antibiotic resistance and virulence factors and in the genetic fingerprints determined by LH-PCR suggest a clear separation of hospital-adapted populations of enterococci from those found in open environments.


Toxins | 2010

Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance

Elena Ortega; Hikmate Abriouel; Rosario Lucas; Antonio Gálvez

Heat-stable enterotoxins are the most notable virulence factors associated with Staphylococcus aureus, a common pathogen associated with serious community and hospital acquired diseases. Staphylococcal enterotoxins (SEs) cause toxic shock-like syndromes and have been implicated in food poisoning. But SEs also act as superantigens that stimulate T-cell proliferation, and a high correlation between these activities has been detected. Most of the nosocomial S. aureus infections are caused by methicillin-resistant S. aureus (MRSA) strains, and those resistant to quinolones or multiresistant to other antibiotics are emerging, leaving a limited choice for their control. This review focuses on these diverse roles of SE, their possible correlations and the influence in disease progression and therapy.


Food and Chemical Toxicology | 2008

Risk factors in enterococci isolated from foods in Morocco: Determination of antimicrobial resistance and incidence of virulence traits

Antonio Sánchez Valenzuela; Nabil Ben Omar; Hikmate Abriouel; Rosario Lucas López; Elena Ortega; Magdalena Martínez Cañamero; Antonio Gálvez

A collection of enterococci isolated from meat, dairy and vegetable foods from Morocco including 23 Enterococus faecalis and 15 Enterococcus faecium isolates was studied. All isolates were sensitive to ampicillin, penicillin, and gentamicin. Many E. faecalis isolates were resistant to tetracycline (86.95%), followed by rifampicin (78.26% ciprofloxacin (60.87%), quinupristin/dalfopristin (56.52%), nitrofurantoin (43.47%), levofloxacin (39.13%), erythromycin (21.73%), streptomycin (17.39%), chloramphenicol (8.69%), vancomycin (8.69%), and teicoplanin (4.34%). E. faecium isolates showed a different antibiotic resistance profile: a high percentage were resistant to nitrofurantoin (73.33%), followed by erythromycin (66.60%), ciprofloxacin (66.66%), levofloxacin (60.00%), and rifampicin (26.66%), and only a very low percentage were resistant to tetracycline (6.66%). One isolate was resistant to vancomycin and teicoplanin. The incidence of virulence factors was much higher among E. faecalis isolates, especially for genes encoding for sex pheromones, collagen adhesin, enterococcal endocarditis antigen, and enterococcal surface protein. Isolates with multiple factors (both antibiotic resistance and virulence traits) were also more frequent among E. faecalis isolates, in which one isolate cumulated up to 15 traits. By contrast, several isolates of E. faecium had only very few unwanted traits as compared to only two isolates in E. faecalis. The high abundance of isolates carrying virulence factors and antibiotic resistance traits suggests that the sanitary quality of foods should be improved in order to decrease the incidence of enterococci.


International Journal of Food Microbiology | 2008

Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons.

Nabil Ben Omar; Hikmate Abriouel; Simon Keleke; Antonio Sánchez Valenzuela; Magdalena Martínez-Cañamero; Rosario Lucas López; Elena Ortega; Antonio Gálvez

Thirty one bacteriocin-producing Lactobacillus isolates were identified among 135 lactobacilli isolated from the Congolese fermented maize product poto poto, during the preparation and from the finished product. Using species-specific PCR and 16S rRNA gene sequencing, 28 and 3 isolates were identified as L. plantarum and L. fermentum, respectively. Cluster analysis of RAPD-PCR fingerprints revealed two main groups (G1 and G2) plus the L. fermentum isolate C4-13. Group G1 contained 23 isolates with a similarity coefficient > 74.5%, and could be divided in two subgroups (G1-1, G1-2) each with several branches, plus the L. plantarum isolate C11. Group G2 contained 8 isolates with a similarity coefficient > 86%, with two main branches. Using PCR amplification with specific primers, several genes of the plantaricin cluster found in L. plantarum C11 were identified in the isolates. The number of genes that were detected varied between the strains. The L. fermentum isolate EC11 also contained the plnDEFG genes. PCR amplification of DNA from isolates with primers directed to the upstream and downstream region of the plantaricin cluster generated an amplicon identical to that obtained with DNA from the control strain L. plantarum WCFS1. Amplification products from the positive strains were used for restriction analysis with HindIII, EcoRI and KpnI in separate reactions. Cluster analysis of restriction profiles revealed high similarities for EcoRI and HindII digest profiles, and an identical profile for all KpnI digests. The L. fermentum EC11 isolate clustered with L. plantarum strains in a group with a high correlation coefficient. The results suggest a low degree of diversity in the plantarincin gene cluster. However, other strains that tested positive for individual plantaricin genes may present great heterogeneity in the plantaricin operons. Because of their broad spectra of inhibition (including Escherichia coli, Salmonella enterica, Enterobacter aerogenes, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis), isolates from the present study could be used to improve the safety and storage stability of poto poto.


Journal of Food Protection | 2007

Differentiation and characterization by molecular techniques of Bacillus cereus group isolates from Poto Poto and Dégué, two traditional cereal-based fermented foods of Burkina Faso and Republic of Congo

Hikmate Abriouel; Nabil Ben Omar; Rosario Lucas López; Magdalena Martínez Cañamero; Elena Ortega; Antonio Gálvez

Poto poto (a maize sourdough) and dégué (a pearl millet-based food) are two traditional African fermented foods. The molecular biology of toxigenic and pathogenic bacteria found in those foods is largely unknown. The purpose of this study was to study the phylogenetic relatedness and toxigenic potential of 26 Bacillus cereus group isolates from these traditional fermented foods. The relatedness of the isolates was evaluated with repetitive element sequence-based PCR (REP-PCR) and 16S rDNA sequencing analysis. A multiplex real-time PCR assay targeting the lef and capC genes of B. anthracis pXO1 and pXO2 plasmids and the sspE chromosomal gene of B. cereus and B. anthracis also was carried out. Melting curve analysis of the sspE amplification product was used to differentiate B. cereus from B. anthracis, and the presence of the B. cereus enterotoxin genes was determined with PCR amplification. Isolates had 15 different REP-PCR profiles, according to which they could be clustered into four groups. 16S rDNA sequencing analysis identified 23 isolates as B. cereus or B. anthracis and three isolates as B. cereus or Bacillus sp. Multiplex real-time PCR amplification indicated the absence of the lef and capC genes of B. anthracis pXO 1 and pXO2 plasmids, and melting curve analysis revealed amplification of the 71-bp sspE product typical of B. cereus in all isolates instead of the 188-bp amplicon of B. anthracis, confirming the identity of these isolates as B. cereus. Four isolates had amylolytic activity. All isolates had lecithinase activity and beta-hemolytic activity. Enterotoxin production was detected in two isolates. The emetic toxin gene was not detected in any isolate. The nheB toxin gene was detected in 19 isolates by PCR amplification; one of these isolates also contained the hblD (L1) gene. The cytotoxin K cytK-1 gene was not detected, but the cytK-2 gene was clearly detected in six isolates.


Clinical and Vaccine Immunology | 2002

NK Cells Mediate Increase of Phagocytic Activity but Not of Proinflammatory Cytokine (Interleukin-6 (IL-6), Tumor Necrosis Factor Alpha, and IL-12) Production Elicited in Splenic Macrophages by Tilorone Treatment of Mice during Acute Systemic Candidiasis

José Juan Gaforio; Elena Ortega; Ignacio Algarra; M.J. Serrano; Gerardo Alvarez de Cienfuegos

ABSTRACT The participation of NK cells in the activation of splenic macrophages or in resistance to systemic candidiasis is still a matter of debate. We had previously reported that there is a correlation between natural killer cell activation and resistance to systemic candidiasis. In those experiments we had used tilorone to boost NK cell activity in mice. Here we show a mechanism elicited by tilorone in splenic macrophages which could explain their effect on mouse survival during acute disseminated Candida albicans infection. The results demonstrate that tilorone treatment elicits, by a direct effect, the production of proinflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-12) by splenic macrophages. In addition, it increases the capacity of splenic macrophages to phagocytize C. albicans through activation of NK cells. We also demonstrate that the presence of NK cells is essential for maintaining a basal level of phagocytic activity, which characterizes splenic macrophages of naïve control mice. The results demonstrate that it is possible to identify two phenotypically and functionally peculiar cell populations among splenic macrophages: (i) cells of the “stimulator/secretor phenotype,” which show high levels of major histocompatibility complex (MHC) class II surface expression, are poorly phagocytic, and synthesize the proinflammatory cytokines IL-6, TNF-α, and IL-12, and (ii) cells of the “phagocytic phenotype,” which express low levels of MHC class II molecules, are highly phagocytic, and do not secrete proinflammatory cytokines.


Microbiology and Immunology | 1994

Inflammatory and phagocytic response to experimental Campylobacter jejuni infection in mice.

Pedro L. Pancorbo; Aurelia M. Gallego; Manuel A. de Pablo; Carmen Alvarez; Elena Ortega; Gerardo Alvarez de Cienfuegos

After intraperitoneal inoculation with Campylobacter jejuni BALB/c, Swiss and DBA mice show a peritoneal inflammatory response of different intensity. Only BALB/c mice have a strong peritoneal response. Simultaneous intraperitoneal inoculation of C. jejuni plus FeCl3 increase both inflammatory response and phagocytic activity in Swiss mice, without production of diarrhea. Some thermostable compounds of C. jejuni have a very strong chemotactic activity against peritoneal cells of mice, whereas a diffusible, thermolabile and glutaraldehyde‐resistant factor has an inhibitory effect over murine peritoneal cell phagocytosis. Bactericidal activity of peritoneal cells increased after in vitro re‐challenge with C. jejuni. Bacteremia is present in all the mice strains tested, but the clearance is quick in DBA and slow in BALB/c and Swiss mice. These experiments confirm that in mice, peritoneal non‐specific mechanisms of defense, such as macrophages, play an important role in order to control C. jejuni infection.


Journal of Immunological Methods | 2001

The use of 7-amino-actinomycin D in the analysis of Candida albicans phagocytosis and opsonization

Elena Ortega; Ignacio Algarra; M.J. Serrano; G. Álvarez de Cienfuegos; José Juan Gaforio

We describe the use of 7-amino-actinomycin D (7AAD) to measure phagocytosis and the opsonizing capacity of serum. Heat-inactivated Candida albicans was previously stained with 7AAD and incubated with resident peritoneal macrophages. The samples were analyzed by flow cytometry and phagocytic cells were identified by their bright red fluorescence. This is a rapid, reproducible and reliable one-step procedure and provides a means of evaluating low levels of phagocytosis.


Current Microbiology | 1999

Evaluation of Cytokine Production and Phagocytic Activity in Mice Infected with Campylobacter jejuni

Pedro L. Pancorbo; Manuel A. de Pablo; Elena Ortega; Aurelia M. Gallego; Carmen Alvarez; Gerardo Alvarez de Cienfuegos

Abstract. The effect of several Campylobacter jejuni strains on the immune response was analyzed in mice after intraperitoneal inoculation with 1010 colony forming units (CFU). Three C. jejuni strains were assayed: CCUG 6968 (enterotoxigenic), CCUG 7580 (enterotoxigenic), and CCUG 7440 (non-enterotoxigenic). These C. jejuni strains induced a peritoneal inflammatory response and an important increase in the peritoneal phagocyte oxidative activity measured by chemiluminescence assay, as well as an increase in the number of peritoneal cells. Both interleukin-1 (IL-1) and tumor necrosis factor α (TNFα) production by peritoneal cells were not modified. However, C. jejuni 7440 caused a statistically significant increase in TNFα production. These results have demonstrated that different strains of C. jejuni induce an increase of the inflammatory response without a significant cytokine release. However, these infectious microorganisms may be eliminated efficiently by murine macrophages after phagocytosis.


Food Microbiology | 2017

Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods

Rebeca Gadea; Miguel Ángel Fernández Fuentes; Rubén Pérez Pulido; Antonio Gálvez; Elena Ortega

In the present study, a collection of 76 biocide-sensitive bacterial strains isolated from organically produced food were adapted by repeated exposure to increasing concentrations of the quaternary ammonium compounds (QACs) benzalkonium chloride (BC) and hexadecylpyridinium chloride (HDP). The sensitivity of both wildtype strains and their corresponding QAC-adapted strains to other biocides and to antibiotics was studied. QAC tolerance increased in 88.2% of strains for BC and in 30.3% of strains for HDP, with increases in minimum inhibitory concentrations between 2 and over 100 fold. Adaptive resistance was stable after 20 subcultures in biocide-free medium for 7 and 5 of the BC- and HDP-adapted strains, respectively. Adaptation to BC and HDP also reduced the susceptibility to other biocides, mainly hexachlorophene (CF), didecyldimethylammonium bromide (AB), triclosan (TC) and chlorhexidine (CH). BC-adapted strains showed increased antibiotic resistance to ampicillin (AM) followed by sulfamethoxazol (SXT) and cefotaxime (CTX), and some showed increased sensitivity to ceftazidime (CAZ), CTX, AM and STX. Changes in antibiotic resistance in HDP-adapted strains were more heterogeneous and strain-dependent. Main efflux pump genes detected in QAC-adapted strains were acrB, sugE, norC, qacE and qacH, as well as antibiotic resistance genes aac(6_)-Ie-aph(2_)-Ia, aph(2_)-Ic, ant(4_)-Ia, lsa, mrsA/B, ereA, ermB and cat. Membrane anisotropy experiments revealed that QAC adaptation induced an increase in membrane rigidity in the case of BC, while response to HDP was more heterogeneous and strain-dependent. Growth capacity was significantly higher in some QAC-adapted strains and strain-dependent changes in heat tolerance were also detected in QAC-adapted strains. Gastric acid or bile resistances do not seem to be influenced by QAC adaptation.

Collaboration


Dive into the Elena Ortega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge