Rosario Lucas López
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosario Lucas López.
Critical Reviews in Biotechnology | 2008
Antonio Gálvez; Rosario Lucas López; Hikmate Abriouel; Eva Valdivia; Nabil Ben Omar
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.
International Journal of Food Microbiology | 2008
Hikmate Abriouel; Nabil Ben Omar; Antonio Cobo Molinos; Rosario Lucas López; Ma José Grande; Pilar Martínez-Viedma; Elena Ortega; Magdalena Martínez Cañamero; Antonio Gálvez
A comparative study was carried out among enterococci isolated from fruits and vegetable foods, water and soil, and clinical samples. Results indicate strong differences in the numbers of enterococcal species found in different environments as well as their abundance. While Enterococcus faecalis was clearly the predominant species in clinical samples, Enterococcus faecium predominated in vegetables, and it slightly outnumbered E. faecalis in water samples. Other species (Enterococcus hirae, Enterococcus mundtii, Enterococcus durans, Enterococcus gallinarum and Enterococcus casseliflavus) were found more frequently in vegetables, water, and specially in soil. Isolates from vegetable foods showed a lower incidence of antibiotic resistance compared to clinical isolates for most antimicrobials tested, especially erythromycin, tetracycline, chloramphenicol, ciprofloxacin, levofloxacin, gentamicin and streptomycin for E. faecalis, and quinupristin/dalfopristin, ampicillin, penicillin, ciprofloxacin, levofloxacin, rifampicin, choramphenicol, gentamicin and nitrofurantoin for E. faecium. E. faecium isolates from vegetable foods and water showed an average lower number of antibiotic resistance traits (2.95 and 3.09 traits for vegetable and water isolates, respectively) compared to clinical samples (7.5 traits). Multi-resistant strains were also frequent among clinical E. faecalis isolates (5.46 traits on average). None of E. faecalis or E. faecium isolates from vegetable foods, water and soil showed beta-haemolytic activity, while 25.64% of clinical E. faecalis did. A 51.28% of E. faecalis clinical isolates tested positive for the cylA, cylB, cylM set of genes, while some or all of these genes were missing in the rest of isolates. In clinical E. faecalis and E. faecium isolates, the genetic determinants for the enterococcal surface protein gene (esp), the collagen adhesin gene (ace) and the sex pheromone gene ccf (as well as cob in E. faecalis) showed a clearly higher incidence compared to isolates from other sources. E. faecalis isolates from vegetable foods and water had much lower average numbers of virulence genetic determinants per strain (4.23 and 4.0, respectively) compared to clinical isolates (8.71). Similarly, among E. faecium the lowest average number of traits per strain occurred in vegetable food isolates (1.72) followed by water (3.9) and clinical isolates (4.73). Length heterogeneity (LH)-PCR typing with espF-aceF-ccfF and espF-ccfF primers revealed genomic groups that clearly differentiated clinical isolates from those of vegetable foods, water and soil (except for two clinical isolates). The large differences found in the incidence of antibiotic resistance and virulence factors and in the genetic fingerprints determined by LH-PCR suggest a clear separation of hospital-adapted populations of enterococci from those found in open environments.
Applied and Environmental Microbiology | 2005
Antonio Cobo Molinos; Hikmate Abriouel; Nabil Ben Omar; Eva Valdivia; Rosario Lucas López; Mercedes Maqueda; Magdalena Martínez Cañamero; Antonio Gálvez
ABSTRACT The effect of immersion solutions containing enterocin AS-48 alone or in combination with chemical preservatives on survival and proliferation of Listeria monocytogenes CECT 4032 inoculated on fresh alfalfa sprouts, soybean sprouts, and green asparagus was tested. Immersion treatments (5 min at room temperature) with AS-48 solutions (25 μg/ml) reduced listeria counts of artificially contaminated alfalfa and soybean sprouts by approximately 2.0 to 2.4 log CFU/g compared to a control immersion treatment in distilled water. The same bacteriocin immersion treatment applied on green asparagus had a very limited effect. During storage of vegetable samples treated with immersion solutions of 12.5 and 25 μg of AS-48/ml, viable listeria counts were reduced below detection limits at days 1 to 7 for alfalfa and soybean sprouts at 6 and 15°C, as well as green asparagus at 15°C. Only a limited inhibition of listeria proliferation was detected during storage of bacteriocin-treated alfalfa sprouts and green asparagus at 22°C. Treatment with solutions containing AS-48 plus lactic acid, sodium lactate, sodium nitrite, sodium nitrate, trisodium phosphate, trisodium trimetaphosphate, sodium thiosulphate, n-propyl p-hydroxybenzoate, p-hydoxybenzoic acid methyl ester, hexadecylpyridinium chloride, peracetic acid, or sodium hypochlorite reduced viable counts of listeria below detection limits (by approximately 2.6 to 2.7 log CFU/g) upon application of the immersion treatment and/or further storage for 24 h, depending of the chemical preservative concentration. Significant increases of antimicrobial activity were also detected for AS-48 plus potassium permanganate and in some combinations with acetic acid, citric acid, sodium propionate, and potassium sorbate.
Applied and Environmental Microbiology | 2005
Rubén Pérez Pulido; Nabil Ben Omar; Hikmate Abriouel; Rosario Lucas López; Magdalena Martínez Cañamero; Antonio Gálvez
ABSTRACT Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.
Food and Chemical Toxicology | 2008
Antonio Sánchez Valenzuela; Nabil Ben Omar; Hikmate Abriouel; Rosario Lucas López; Elena Ortega; Magdalena Martínez Cañamero; Antonio Gálvez
A collection of enterococci isolated from meat, dairy and vegetable foods from Morocco including 23 Enterococus faecalis and 15 Enterococcus faecium isolates was studied. All isolates were sensitive to ampicillin, penicillin, and gentamicin. Many E. faecalis isolates were resistant to tetracycline (86.95%), followed by rifampicin (78.26% ciprofloxacin (60.87%), quinupristin/dalfopristin (56.52%), nitrofurantoin (43.47%), levofloxacin (39.13%), erythromycin (21.73%), streptomycin (17.39%), chloramphenicol (8.69%), vancomycin (8.69%), and teicoplanin (4.34%). E. faecium isolates showed a different antibiotic resistance profile: a high percentage were resistant to nitrofurantoin (73.33%), followed by erythromycin (66.60%), ciprofloxacin (66.66%), levofloxacin (60.00%), and rifampicin (26.66%), and only a very low percentage were resistant to tetracycline (6.66%). One isolate was resistant to vancomycin and teicoplanin. The incidence of virulence factors was much higher among E. faecalis isolates, especially for genes encoding for sex pheromones, collagen adhesin, enterococcal endocarditis antigen, and enterococcal surface protein. Isolates with multiple factors (both antibiotic resistance and virulence traits) were also more frequent among E. faecalis isolates, in which one isolate cumulated up to 15 traits. By contrast, several isolates of E. faecium had only very few unwanted traits as compared to only two isolates in E. faecalis. The high abundance of isolates carrying virulence factors and antibiotic resistance traits suggests that the sanitary quality of foods should be improved in order to decrease the incidence of enterococci.
Journal of Food Protection | 2007
Maria J. Grande; Rosario Lucas López; Hikmate Abriouel; Eva Valdivia; Nabil Ben Omar; Mercedes Maqueda; Magdalena Martínez-Cañamero; Antonio Gálvez
The antimicrobial activity of enterocin AS-48 against Staphylococcus aureus was tested in vegetable sauces, alone and in combination with phenolic compounds. When added alone at 25 microg/ml, AS-48 inactivated all detectable staphylococci in napoletana and pesto sauces stored at 22 degrees C, but it only caused limited growth inhibition when these sauces were stored at 10 degrees C, as well as in other sauces such as carbonara and green sauce for fish. At 80 microg/ml, AS-48 eliminated all detectable staphylococci in napoletana, pesto, and green sauce for fish regardless of storage temperature, but it still had much more limited effect in carbonara sauce. Antistaphylococcal activity was potentiated significantly when AS-48 was used in combination with the phenolic compounds carvacrol, geraniol, eugenol, terpineol, caffeic acid, p-coumaric acid, citral, and hydrocinnamic acid. The efficacy of the combined treatments depended both on the phenolic compound and the type of sauce. In carbonara sauce stored at 22 degrees C, the combinations of 80 microg/ml AS-48 and 20 mM hydrocinnamic acid or 126 mM carvacrol reduced viable counts of staphylococci below detection limits for up to 30 days.
Food and Chemical Toxicology | 2009
Antonio Cobo Molinos; Hikmate Abriouel; Rosario Lucas López; Nabil Ben Omar; Eva Valdivia; Antonio Gálvez
Enterocin AS-48 (30-60 microg/g) significantly reduced viable counts of Listeria monocytogenes in Russian-type salad during one week storage at 10 degrees C. Antilisterial activity of AS-48 (30 microg/g) in salad was strongly enhanced by essential oils (thyme verbena, thyme red, Spanish oregano, ajowan, tea tree, clove, and sage oils tested at 1%, as well as with 2% rosemary oil). Antilisterial activity also increased in combination with bioactive components from essential oils and plant extracts, with other related antimicrobials of natural origin or derived from chemical synthesis (carvacrol, eugenol, thymol, terpineol, tyrosol, hydroxytyrosol, caffeic, ferulic and vanillic acid, luteolin, geranyl butyrate, geranyl phenylacetate, pyrocatechol, hydrocinnamic acid, tert butylhydroquinone, phenylphosphate, isopropyl methyl phenol, coumaric acid, and 2-nitropropanol), and with food preservatives (citric and lactic acid, sucrose palmitate, sucrose stearate, p-hydroxybenzoic methylester acid -- PHBME, and Nisaplin). AS-48 acted synergistically with citric, lactic acid, and PHBME. A mixed population of two L. monocytogenes strains was markedly reduced for one week in salads treated with AS-48 (30 microg/g) in combination with lactic acid, PHBME or Nisaplin. The increased bactericidal activity of these combinations is interesting to improve protection against L. monocytogenes during salad storage.
International Journal of Food Microbiology | 2008
Pilar Martínez Viedma; Angel Sobrino López; Nabil Ben Omar; Hikmate Abriouel; Rosario Lucas López; Eva Valdivia; Olga Martín Belloso; Antonio Gálvez
The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.
Food and Chemical Toxicology | 2008
Antonio Cobo Molinos; Hikmate Abriouel; Rosario Lucas López; Eva Valdivia; Nabil Ben Omar; Antonio Gálvez
Enterocin AS-48 was tested for decontamination of soybean sprouts against Gram-negative bacteria. Although treatment with bacteriocin alone had no effect on Salmonella enterica, a synergistic antimicrobial effect was detected at pH 9.0 and in combination with moderate heat treatment. Greatest inactivation was achieved for sprouts heated for 5 min at 65 degrees C in an alkaline (pH 9.0) enterocin AS-48 solution of 25 microg/ml. Bactericidal activity against S. enterica increased greatly when enterocin AS-48 was used in washing solutions in combination with several chemical compounds: EDTA, lactic acid, peracetic acid, polyphosphoric acid, sodium hypochlorite, hexadecylpyridinium chloride, propyl-p-hydroxybenzoate, and hydrocinnamic acid. The combined treatment of enterocin AS-48 and polyphosphoric acid was tested against several other Gram-negative bacteria inoculated on sprouts. The bacteria tested showed great differences in sensitivity to polyphosphoric acid, but synergism with enterocin AS-48 was confirmed in all cases. Combinations of enterocin AS-48 (25 microg/ml) and polyphosphoric acid in a concentration range of 0.1 to 2.0% significantly reduced or inhibited growth of the populations of S. enterica, Escherichia coli O157:H7, Shigella spp., Enterobacter aerogenes, Yersinia enterocolitica, Aeromonas hydrophila and Pseudomonas fluorescens in sprout samples stored at 6 degrees C and 15 degrees C. The combined treatment could therefore be applied to reduce the risks of Gram-negative pathogenic as well as spoilage bacteria on sprouts.
Journal of Food Protection | 2007
Maria J. Grande; Hikmate Abriouel; Rosario Lucas López; Eva Valdivia; Nabil Ben Omar; Magdalena Martínez-Cañamero; Antonio Gálvez
The broad-spectrum bacteriocin enterocin AS-48 was tested for biopreservation of ready-to-eat vegetable foods (soups and purees) against aerobic mesophilic endospore-forming bacteria. By adding AS-48 (10 microg/ml), Bacillus cereus LWL1 was completely inhibited in all six vegetable products tested (natural vegetable cream, asparagus cream, traditional soup, homemade-style traditional soup, vegetable soup, and vichyssoise) for up to 30 days at 6, 15, and 22 degrees C. A collection of strains isolated from spoiled purees showed slightly higher resistance to AS-48 in the order Paenibacillus sp. > Bacillus macroides > B. cereus, although they were also completely inhibited in natural vegetable cream by AS-48 at 10 microg/ml. However, cocktails of five or eight strains composed of B. cereus (three strains), B. macroides (two strains), and Paenibacillus sp., Paenibacillus polymyxa, and Paenibacillus amylolyticus showed higher bacteriocin resistance with AS-48 of up to 50 microg/ml required for complete inactivation in natural vegetable cream stored at 22 degrees C. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) analysis showed that paenibacilli (along with some B. cereus) was the predominant survivor in the cocktails after bacteriocin treatment. To increase the effectiveness of enterocin AS-48, the bacteriocin was tested (at 20 microg/ml) against the eight-strain cocktail in natural vegetable cream in combination with other antimicrobials. The combination of AS-48 and nisin had a slight but significant additive effect. Bactericidal activity was greatly enhanced by phenolic compounds (carvacrol, eugenol, geraniol, and hydrocinnamic acid), achieving a rapid and complete inactivation of bacilli in the tested puree at 22 degrees C.