Elena Stolboushkina
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Stolboushkina.
Acta Crystallographica Section D-biological Crystallography | 2005
Alexey D. Nikulin; Elena Stolboushkina; Anna Perederina; Ioulia Vassilieva; Udo Blaesi; Isabella Moll; Galina Kachalova; Shigeyuki Yokoyama; Dmitry G. Vassylyev; Maria Garber; Stanislav Nikonov
The structure of the Hfq protein from Pseudomonas aeruginosa was determined using two different ionic conditions. In both cases the molecules formed identical hexameric rings, but some variations in the crystal packing were revealed. Hfq belongs to the family of Sm/LSm proteins, the members of which can form hexameric as well as heptameric rings. Comparative analysis of known structures of this protein family shows that the fragment of the Sm-fold responsible for oligomerization is strongly structurally conserved. In the heptameric ring, three conserved hydrogen bonds between beta-strands of adjacent molecules hold together the monomers, whereas in the hexameric rings of Hfq an additional conserved inaccessible hydrogen bond between neighbouring monomers is observed.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Olga Moskaleva; Bogdan S. Melnik; A. G. Gabdulkhakov; Maria Garber; Stanislav Nikonov; Elena Stolboushkina; Alexei Nikulin
The bacterial Sm-like protein Hfq forms homohexamers both in solution and in crystals. The monomers are organized as a continuous beta-sheet passing through the whole hexamer ring with a common hydrophobic core. Analysis of the Pseudomonas aeruginosa Hfq (PaeHfq) hexamer structure suggested that solvent-inaccessible intermonomer hydrogen bonds created by conserved amino-acid residues should also stabilize the quaternary structure of the protein. In this work, one such conserved residue, His57, in PaeHfq was replaced by alanine, threonine or asparagine. The crystal structures of His57Thr and His57Ala Hfq were determined and the stabilities of all of the mutant forms and of the wild-type protein were measured. The results obtained demonstrate the great importance of solvent-inaccessible conserved hydrogen bonds between the Hfq monomers in stabilization of the hexamer structure.
Journal of Molecular Biology | 2011
Sergey E. Dmitriev; Elena Stolboushkina; Ilya M. Terenin; Dmitri E. Andreev; Maria Garber; Ivan N. Shatsky
Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNA(i) into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.
Biochemistry | 2011
Elena Stolboushkina; Maria Garber
Translation initiation factor 2 (IF2) is one of key components of the translation initiation system in living cells. In bacteria IF2 is a multidomain monomeric protein, while in eukaryotic and archaean cells e/aIF2 is heterotrimer (αβγ). Data, including our own, on eukaryotic type translation initiation factor 2 (e/aIF2) structure and functioning are presented. There are also new data on initiation factors eIF5 and eIF2B that directly interact with eIF2 and control its participation in nucleotide exchange.
Journal of Molecular Biology | 2013
Elena Stolboushkina; Stanislav Nikonov; Natalia Zelinskaya; Valentina Arkhipova; Alexei Nikulin; Maria Garber; Oleg Nikonov
Heterotrimeric aIF2αβγ (archaeal homologue of the eukaryotic translation initiation factor 2) in its GTP-bound form delivers Met-tRNAi(Met) to the small ribosomal subunit. It is known that the heterodimer containing the GTP-bound γ subunit and domain 3 of the α subunit of aIF2 is required for the formation of a stable complex with Met-tRNAi. Here, the crystal structure of an incomplete ternary complex including aIF2αD3γ⋅GDPNP⋅Met-tRNAf(Met) has been solved at 3.2Å resolution. This structure is in good agreement with biochemical and hydroxyl radical probing data. The analysis of the complex shows that despite the structural similarity of aIF2γ and the bacterial translation elongation factor EF-Tu, their modes of tRNA binding are very different. Remarkably, the recently published 5.0-Å-resolution structure of almost the same ternary initiation complex differs dramatically from the structure presented. Reasons for this discrepancy are discussed.
Scientific Reports | 2016
Kseniya A. Akulich; Dmitry E. Andreev; Ilya M. Terenin; Victoria V. Smirnova; Aleksandra S. Anisimova; Desislava S. Makeeva; Valentina Arkhipova; Elena Stolboushkina; Maria Garber; Maria M. Prokofjeva; Pavel Spirin; Vladimir S. Prassolov; Ivan N. Shatsky; Sergey E. Dmitriev
mRNAs lacking 5′ untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes.
Crystallography Reports | 2014
Valentina Arkhipova; Elena Stolboushkina; Oleg Nikonov; A. G. Gabdulkhakov; Maria Garber
Archaeal translation initiation factor 2 (aIF2) is homologous to its eukaryotic counterpart (eIF2). It is a heterotrimeric protein consisting of α, β, and γ subunits. The protein e/aIF2 forms a ternary complex with guanosine 5′-triphosphate and the initiator methionyl-tRNA (Met-tRNAi) and delivers the latter to the ribosome. In archaea, translation initiation factor 2 has an additional function. The γ subunit of aIF2 binds mRNAs with a triphosphate at the 5′-end and prevents 5′-to-3′ directional mRNA decay. To determine the mRNA-binding site on the surface of aIF2γ, mutations were introduced into the protein sequence at sites of possible interactions with mRNA. The crystals of the mutant forms of aIF2γ were obtained, and X-ray diffraction data sets suitable for structure determination at atomic resolution were collected.
Biochemistry | 2009
Elena Stolboushkina; Oleg Nikonov; Maria Garber
The structure of the intact heterotrimeric translation initiation factor 2 (e/aIF2) is of great interest due to its key role in the initiator tRNA delivery to the ribosome and in translation initiation regulation in eukaryotes and archaea. We have chosen aIF2 from the hyperthermophilic archaeobacterium Sulfolobus solfataricus (SsoIF2) as an object for crystallization and structural investigations. Genes of the SsoIF2 subunits α, β, and γ were cloned and superexpressed. A method for heterotrimer SsoIF2αβγ purification was elaborated with at least 95% purity. Highly ordered crystals of the full-sized SsoIF2, reflecting X-rays at the resolution up to 2.8 Å, were obtained for the first time.
Biochimie | 2016
Oleg Nikonov; Olesya Kravchenko; Valentina Arkhipova; Elena Stolboushkina; Stanislav Nikonov; Maria Garber
In Archaea and Eukaryotes, the binding of Met-tRNAi(Met) to the P-site of the ribosome is mediated by translation initiation factor 2 (a/eIF2) which consists of three subunits: α, β and γ. Here, we present the high-resolution structure of intact aIF2γ from Sulfolobus solfataricus (SsoIF2γ) in complex with GTP analog, GDPCP. The comparison of the nucleotide-binding pockets in this structure and in the structure of the ribosome-bound form of EF-Tu reveals their close conformation similarity. The nucleotide-binding pocket conformation observed in this structure could be consider as corresponding to intermediate conformation of EF-Tu nucleotide-binding pocket in its transition from the GTP-bound form to the GDP-bound one. Three clusters of well defined water molecules are associated with amino acid residues of the SsoIF2γ nucleotide-binding pocket and stabilize its conformation. We suppose that two water bridges between the oxygen atoms of the GTP γ-phosphate and negatively charged residues of the pocket can serve as ways to transmit protons arising from the catalytic reaction.
Biochemistry | 2016
Olesya Kravchenko; Oleg Nikonov; Natalia Nevskaya; Elena Stolboushkina; Valentina Arkhipova; Maria Garber; Stanislav Nikonov
The crystal structure of the γ-subunit of translation initiation factor 2 from the archaeon Sulfolobus solfataricus (SsoIF2γ) has been solved based on perfectly hemihedral twinned data. The protein was cocrystallized with the 10-fold molar excess of GTP analog (GDPCP) over protein. However, no nucleotide was found in the structure, and the model demonstrated the apo form of the protein. Two slightly different molecules in the asymmetric unit of the crystal are related by the non-crystallographic 2-fold axis and form a tightly associated dimer. This dimer is stabilized by an intermolecular hydrophobic core and hydrogen bonds. Lack of GDPCP in the nucleotide-binding pocket of the γ-subunit and significant excess of dimers over monomers in the crystallization solution suggest that these dimers are the building blocks of the crystal. Contrary to SsoIF2γ monomers, these dimers are able to crystallize in two oppositely oriented slightly different crystal domains, thus forming a twinned crystal. Comparison of crystallization conditions for the twinned and untwinned crystals of apo SsoIF2γ showed that stabilization of the dimers in the solution may be caused by higher sodium salt concentration. Since amino acid residues involved in intermolecular contacts in the dimer are responsible for binding of the γand α-subunits within SsoIF2, increase in sodium salt concentration may prevent functioning of SsoIF2 in the cell.