Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Tarnavsky is active.

Publication


Featured researches published by Elena Tarnavsky.


Journal of Hydrometeorology | 2014

A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins

Zed Zulkafli; Wouter Buytaert; Christian Onof; Bastian Manz; Elena Tarnavsky; Waldo Lavado; Jean-Loup Guyot

AbstractThe Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the algorithm involve the radar reflectivity–rainfall rate relationship, surface clutter detection over high terrain, a new reference database for the passive microwave algorithm, and a higher-quality gauge analysis product for monthly bias correction. To assess the impacts of the improved algorithm, the authors compare the version 7 and the older version 6 products with data from 263 rain gauges in and around the northern Peruvian Andes. The region covers humid tropical rain forest, tropical mountains, and arid-to-humid coastal plains. The authors find that the version 7 product has a significantly lower bias and an improved representation of the rainfall distribution. They further evaluated the performance of the version 6 and 7 products as forcing data for hydrological modeling by comparing ...


Journal of Geophysical Research | 2014

The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set

Ross Maidment; D. I. F. Grimes; Richard P. Allan; Elena Tarnavsky; Marc Stringer; Tim J. Hewison; Rob Roebeling; Emily Black

African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30 year (1983–2012), temporally consistent rainfall data set for Africa known as TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African Rainfall Climatology And Time series) using archived Meteosat thermal infrared imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10 day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation data sets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit and Global Precipitation Climatology Centre gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm d−1 (21%) compared to other data sets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.


Journal of Applied Meteorology and Climatology | 2014

Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present

Elena Tarnavsky; D. I. F. Grimes; Ross Maidment; Emily Black; Richard P. Allan; Marc Stringer; Robin Chadwick; Francois Kayitakire

AbstractTropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as ...


Remote Sensing | 2015

Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

Carolien Tote; Domingos Patricio; H.L. Boogaard; Raymond van der Wijngaart; Elena Tarnavsky; Chris Funk

Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.


Scientific Data | 2017

A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

Ross Maidment; D. I. F. Grimes; Emily Black; Elena Tarnavsky; Matthew Young; Helen Greatrex; Richard P. Allan; Thorwald H. M. Stein; Edson Nkonde; Samuel Senkunda; Edgar Misael Uribe Alcántara

Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2012

Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments

Elena Tarnavsky; Mark Mulligan; Gregory J. Husak

Abstract A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions. Editor D. Koutsoyiannis Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.


Remote Sensing | 2013

Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

Elena Tarnavsky; Mark Mulligan; Mohamed Ouessar; Abdoulaye Faye; Emily Black

This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.


Archive | 2010

A Survey of the Evolution of Remote Sensing Imaging Systems and Urban Remote Sensing Applications

Debbie Fugate; Elena Tarnavsky; Douglas A. Stow

The increasingly diverse nature of sensor systems and imagery products, as well as their commercial availability, have led to a broad set of applications resulting in rich, interdisciplinary topics that come under the umbrella of urban remote sensing. This chapter reviews the development of remote sensing systems, their contribution to the emergence of urban remote sensing, and how they have given rise to the pursuit of novel approaches to the study of urban environments.


Remote Sensing | 2016

The Use of Remotely Sensed Rainfall for Managing Drought Risk: A Case Study of Weather Index Insurance in Zambia

Emily Black; Elena Tarnavsky; Ross Maidment; Helen Greatrex; Agrotosh Mookerjee; Tristan Quaife; Matthew Brown

Remotely sensed rainfall is increasingly being used to manage climate-related risk in gauge sparse regions. Applications based on such data must make maximal use of the skill of the methodology in order to avoid doing harm by providing misleading information. This is especially challenging in regions, such as Africa, which lack gauge data for validation. In this study, we show how calibrated ensembles of equally likely rainfall can be used to infer uncertainty in remotely sensed rainfall estimates, and subsequently in assessment of drought. We illustrate the methodology through a case study of weather index insurance (WII) in Zambia. Unlike traditional insurance, which compensates proven agricultural losses, WII pays out in the event that a weather index is breached. As remotely sensed rainfall is used to extend WII schemes to large numbers of farmers, it is crucial to ensure that the indices being insured are skillful representations of local environmental conditions. In our study we drive a land surface model with rainfall ensembles, in order to demonstrate how aggregation of rainfall estimates in space and time results in a clearer link with soil moisture, and hence a truer representation of agricultural drought. Although our study focuses on agricultural insurance, the methodological principles for application design are widely applicable in Africa and elsewhere.


Giscience & Remote Sensing | 2004

Spatial and Radiometric Fidelity of Airborne Multispectral Imagery in the Context of Land-Cover Change Analyses

Elena Tarnavsky; Douglas A. Stow; Lloyd L. Coulter; Allen Hope

The goal was to quantitatively estimate and compare the fidelity of images acquired with a digital imaging system (ADAR 5500) and generated through scanning of color infrared aerial photographs (SCIRAP) using image-based metrics. Images were collected nearly simultaneously in two repetitive flights to generate multi-temporal datasets. Spatial fidelity of ADAR was lower than that of SCIRAP images. Radiometric noise was higher for SCIRAP than for ADAR images, even though noise from misregistration effects was lower. These results suggest that with careful control of film scanning, the overall fidelity of SCIRAP imagery can be comparable to that of digital multispectral camera data. Therefore, SCIRAP images can likely be used in conjunction with digital metric camera imagery in long-term landcover change analyses.

Collaboration


Dive into the Elena Tarnavsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Stow

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge