Ross Maidment
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ross Maidment.
Journal of Geophysical Research | 2014
Ross Maidment; D. I. F. Grimes; Richard P. Allan; Elena Tarnavsky; Marc Stringer; Tim J. Hewison; Rob Roebeling; Emily Black
African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30 year (1983–2012), temporally consistent rainfall data set for Africa known as TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African Rainfall Climatology And Time series) using archived Meteosat thermal infrared imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10 day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation data sets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit and Global Precipitation Climatology Centre gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm d−1 (21%) compared to other data sets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.
Journal of Applied Meteorology and Climatology | 2014
Elena Tarnavsky; D. I. F. Grimes; Ross Maidment; Emily Black; Richard P. Allan; Marc Stringer; Robin Chadwick; Francois Kayitakire
AbstractTropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as ...
Geophysical Research Letters | 2015
Ross Maidment; Richard P. Allan; Emily Black
Multiple observational data sets and atmosphere-only simulations from the Coupled Model Intercomparison Project Phase 5 are analyzed to characterize recent rainfall variability and trends over Africa focusing on 1983–2010. Data sets exhibiting spurious variability, linked in part to a reduction in rain gauge density, were identified. The remaining observations display coherent increases in annual Sahel rainfall (29 to 43 mm yr−1 per decade), decreases in March–May East African rainfall (−14 to −65 mm yr−1 per decade), and increases in annual Southern Africa rainfall (32 to 41 mm yr−1 per decade). However, Central Africa annual rainfall trends vary in sign (−10 to +39 mm yr−1 per decade). For Southern Africa, observed and sea surface temperature (SST)-forced model simulated rainfall variability are significantly correlated (r~0.5) and linked to SST patterns associated with recent strengthening of the Pacific Walker circulation.
Journal of Geophysical Research | 2011
Thorwald H. M. Stein; Douglas J. Parker; Julien Delanoë; N. S. Dixon; Robin J. Hogan; Peter Knippertz; Ross Maidment; John H. Marsham
The West African summer monsoon (WAM) is an important driver of the global climate and locally provides most of the annual rainfall. A solid climatological knowledge of the complex vertical cloud structure is invaluable to forecasters and modelers to improve the understanding of the WAM. In this paper, 4 years of data from the CloudSat profiling radar and CALIPSO are used to create a composite zonal mean vertical cloud and precipitation structure for the WAM. For the first time, the near-coincident vertical radar and lidar profiles allow for the identification of individual cloud types from optically thin cirrus and shallow cumulus to congestus and deep convection. A clear diurnal signal in zonal mean cloud structure is observed for the WAM, with deep convective activity enhanced at night producing extensive anvil and cirrus, while daytime observations show more shallow cloud and congestus. A layer of altocumulus is frequently observed over the Sahara at night and day, extending southward to the coastline, and the majority of this cloud is shown to contain supercooled liquid in the top. The occurrence of deep convective systems and congestus in relation to the position of the African easterly jet is studied, but only the daytime cumulonimbus distribution indicates some influence of the jet position.
Journal of Hydrometeorology | 2014
Matthew Young; Charles J. R. Williams; J. Christine Chiu; Ross Maidment; Shu-Hua Chen
AbstractTropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall b...
Scientific Data | 2017
Ross Maidment; D. I. F. Grimes; Emily Black; Elena Tarnavsky; Matthew Young; Helen Greatrex; Richard P. Allan; Thorwald H. M. Stein; Edson Nkonde; Samuel Senkunda; Edgar Misael Uribe Alcántara
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.
Remote Sensing | 2016
Emily Black; Elena Tarnavsky; Ross Maidment; Helen Greatrex; Agrotosh Mookerjee; Tristan Quaife; Matthew Brown
Remotely sensed rainfall is increasingly being used to manage climate-related risk in gauge sparse regions. Applications based on such data must make maximal use of the skill of the methodology in order to avoid doing harm by providing misleading information. This is especially challenging in regions, such as Africa, which lack gauge data for validation. In this study, we show how calibrated ensembles of equally likely rainfall can be used to infer uncertainty in remotely sensed rainfall estimates, and subsequently in assessment of drought. We illustrate the methodology through a case study of weather index insurance (WII) in Zambia. Unlike traditional insurance, which compensates proven agricultural losses, WII pays out in the event that a weather index is breached. As remotely sensed rainfall is used to extend WII schemes to large numbers of farmers, it is crucial to ensure that the indices being insured are skillful representations of local environmental conditions. In our study we drive a land surface model with rainfall ensembles, in order to demonstrate how aggregation of rainfall estimates in space and time results in a clearer link with soil moisture, and hence a truer representation of agricultural drought. Although our study focuses on agricultural insurance, the methodological principles for application design are widely applicable in Africa and elsewhere.
Archive | 2017
Ross Maidment; Emily Black; Elena Tarnavsky
The dataset comprises high resolution (0.0375 degrees) satellite-derived daily rainfall estimates for all Africa from January 1983 to December 2016 (data from 2017 onwards can be downloaded from the TAMSAT website: http://www.tamsat.org.uk/). The dataset is derived from the TAMSAT African Rainfall Climatology And Time-series (TARCAT) dataset (1983-present). Further details can be found on the TAMSAT website.
Archive | 2016
Ross Maidment; Emily Black; Elena Tarnavsky
The dataset comprises high resolution (0.0375 degrees) satellite-derived daily rainfall estimates for all Africa from January 1983 to December 2015 (data from 2016 onwards can be downloaded from the TAMSAT website: http://www.met.reading.ac.uk/~tamsat). The dataset is derived from the TAMSAT African Rainfall Climatology And Time-series (TARCAT) dataset (1983-present). Further details can be found in the daily data guide for users, available from the TAMSAT website.
Meteorological Applications | 2013
Ross Maidment; D. I. F. Grimes; Richard P. Allan; Helen Greatrex; O. Rojas; O. Leo