Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Yakubova is active.

Publication


Featured researches published by Elena Yakubova.


PLOS Genetics | 2005

Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis

Ana Rus; Ivan Baxter; Balasubramaniam Muthukumar; Jeff Gustin; Brett Lahner; Elena Yakubova; David E. Salt

Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively), accumulate higher shoot levels of Na+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1–1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics). Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes.


PLOS Genetics | 2010

A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1

Ivan Baxter; Jessica N. Brazelton; Danni Yu; Yu S. Huang; Brett Lahner; Elena Yakubova; Yan Li; Joy Bergelson; Justin O. Borevitz; Magnus Nordborg; Olga Vitek; David E. Salt

The genetic model plant Arabidopsis thaliana, like many plant species, experiences a range of edaphic conditions across its natural habitat. Such heterogeneity may drive local adaptation, though the molecular genetic basis remains elusive. Here, we describe a study in which we used genome-wide association mapping, genetic complementation, and gene expression studies to identify cis-regulatory expression level polymorphisms at the AtHKT1;1 locus, encoding a known sodium (Na+) transporter, as being a major factor controlling natural variation in leaf Na+ accumulation capacity across the global A. thaliana population. A weak allele of AtHKT1;1 that drives elevated leaf Na+ in this population has been previously linked to elevated salinity tolerance. Inspection of the geographical distribution of this allele revealed its significant enrichment in populations associated with the coast and saline soils in Europe. The fixation of this weak AtHKT1;1 allele in these populations is genetic evidence supporting local adaptation to these potentially saline impacted environments.


Plant Physiology | 2008

The Effect of Iron on the Primary Root Elongation of Arabidopsis during Phosphate Deficiency

James T. Ward; Brett Lahner; Elena Yakubova; David E. Salt; Kashchandra G. Raghothama

Root architecture differences have been linked to the survival of plants on phosphate (P)-deficient soils, as well as to the improved yields of P-efficient crop cultivars. To understand how these differences arise, we have studied the root architectures of P-deficient Arabidopsis (Arabidopsis thaliana Columbia-0) plants. A striking aspect of the root architecture of these plants is that their primary root elongation is inhibited when grown on P-deficient medium. Here, we present evidence suggesting that this inhibition is a result of iron (Fe) toxicity. When the Fe concentration in P-deficient medium is reduced, we observe elongation of the primary root without an increase in P availability or a corresponding change in the expression of P deficiency-regulated genes. Recovery of the primary root elongation is associated with larger plant weights, improved ability to take up P from the medium, and increased tissue P content. This suggests that manipulating Fe availability to a plant could be a valuable strategy for improving a plants ability to tolerate P deficiency.


Science | 2013

Polyploids Exhibit Higher Potassium Uptake and Salinity Tolerance in Arabidopsis

Dai-Yin Chao; Brian P. Dilkes; Hongbing Luo; Alex Douglas; Elena Yakubova; Brett Lahner; David E. Salt

Double Is Not Trouble The doubling of the genome to create polyploidy is common among land plants, and most major flowering plant lineages exhibit some history of genome duplication. However, the physiological advantages of a doubled genome are not well understood. Chao et al. (p. 658, published online 25 July) identified accessions of the model plant Arabidopsis thaliana with naturally doubled genomes and found that the cytotype of the root, but not shoot, in these natural, as well as in artificially induced, polyploid plants appears to confer increased salt tolerance by regulating leaf potassium levels. Certain thale cress plants collected in the wild contain a duplicated genome and can cope with salty soil. Genome duplication (or polyploidization) has occurred throughout plant evolutionary history and is thought to have driven the adaptive radiation of plants. We found that the cytotype of the root, and not the genotype, determined the majority of heritable natural variation in leaf potassium (K) concentration in Arabidopsis thaliana. Autopolyploidy also provided resistance to salinity and may represent an adaptive outcome of the enhanced K accumulation of plants with higher ploidy.


PLOS Genetics | 2012

Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana

Dai-Yin Chao; Adriano Silva; Ivan Baxter; Yu S. Huang; Magnus Nordborg; John Danku; Brett Lahner; Elena Yakubova; David E. Salt

Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5–2 µg Cd g−1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.


New Phytologist | 2012

Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites

Gareth J. Norton; Shannon R. M. Pinson; Jill Alexander; Susan Mckay; Helle Rüsz Hansen; Guilan Duan; M. Rafiqul Islam; Shofiqul Islam; Jacqueline L. Stroud; Steve P. McGrath; Yong-Guan Zhu; Brett Lahner; Elena Yakubova; Mary Lou Guerinot; Lee Tarpley; Georgia C. Eizenga; David E. Salt; Andrew A. Meharg; Adam H. Price

• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.


PLOS ONE | 2014

Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites

Gareth J. Norton; Alex Douglas; Brett Lahner; Elena Yakubova; Mary Lou Guerinot; Shannon R. M. Pinson; Lee Tarpley; Georgia C. Eizenga; Steve P. McGrath; M. Rafiqul Islam; Shofiqul Islam; Guilan Duan; Yong-Guan Zhu; David E. Salt; Andrew A. Meharg; Adam H. Price

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.


PLOS ONE | 2010

Natural Genetic Variation in Selected Populations of Arabidopsis thaliana Is Associated with Ionomic Differences

Elizabeth Buescher; Tilman Achberger; Idris O. Amusan; Anthony Giannini; Cherie Ochsenfeld; Ana Rus; Brett Lahner; Owen A. Hoekenga; Elena Yakubova; Jeffrey F. Harper; Mary Lou Guerinot; Min Zhang; David E. Salt; Ivan Baxter

Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plants elemental composition (ionome). Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL) populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS). Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.


PLOS ONE | 2012

Biodiversity of Mineral Nutrient and Trace Element Accumulation in Arabidopsis thaliana

Ivan Baxter; Christian Hermans; Brett Lahner; Elena Yakubova; Marina Tikhonova; Nathalie Verbruggen; Dai-Yin Chao; David E. Salt

In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17–19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene×environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.


Plant Physiology | 2014

Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the arabidopsis species range

Dai-Yin Chao; Patrycja Baraniecka; John Danku; Anna Koprivova; Brett Lahner; Hongbing Luo; Elena Yakubova; Brian R. Dilkes; Stanislav Kopriva; David E. Salt

The ability of Arabidopsis to assimilate and accumulate sulfur varies widely across the species range and is controlled in part by diversity in a key reductase enzyme. Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored.

Collaboration


Dive into the Elena Yakubova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Salt

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Ivan Baxter

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dai-Yin Chao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon R. M. Pinson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John Danku

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge