Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Baxter is active.

Publication


Featured researches published by Ivan Baxter.


Nature | 2010

Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines

Susanna Atwell; Yu S. Huang; Bjarni J. Vilhjálmsson; Glenda Willems; Matthew Horton; Yan Li; Dazhe Meng; Alexander Platt; Aaron M. Tarone; Tina T. Hu; Rong Jiang; N. Wayan Muliyati; Xu Zhang; Muhammad Ali Amer; Ivan Baxter; Benjamin Brachi; Joanne Chory; Caroline Dean; Marilyne Debieu; Juliette de Meaux; Joseph R. Ecker; Nathalie Faure; Joel M. Kniskern; Jonathan D. G. Jones; Todd P. Michael; Adnane Nemri; Fabrice Roux; David E. Salt; Chunlao Tang; Marco Todesco

Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association (GWA) studies have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available, because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly self-fertilizing model plant known to harbour considerable genetic variation for many adaptively important traits. Our results are dramatically different from those of human GWA studies, in that we identify many common alleles of major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true associations from false. However, a-priori candidates are significantly over-represented among these associations as well, making many of them excellent candidates for follow-up experiments. Our study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms.


Plant Physiology | 2003

Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice

Ivan Baxter; Jason Tchieu; Michael R. Sussman; Marc Boutry; Michael G. Palmgren; Michael Gribskov; Jeffrey F. Harper; Kristian B. Axelsen

Members of the P-type ATPase ion pump superfamily are found in all three branches of life. Forty-six P-type ATPase genes were identified in Arabidopsis, the largest number yet identified in any organism. The recent completion of two draft sequences of the rice (Oryza sativa) genome allows for comparison of the full complement of P-type ATPases in two different plant species. Here, we identify a similar number (43) in rice, despite the rice genome being more than three times the size of Arabidopsis. The similarly large families suggest that both dicots and monocots have evolved with a large preexisting repertoire of P-type ATPases. Both Arabidopsis and rice have representative members in all five major subfamilies of P-type ATPases: heavy-metal ATPases (P1B), Ca2+-ATPases (endoplasmic reticulum-type Ca2+-ATPase and autoinhibited Ca2+-ATPase, P2A and P2B), H+-ATPases (autoinhibited H+-ATPase, P3A), putative aminophospholipid ATPases (ALA, P4), and a branch with unknown specificity (P5). The close pairing of similar isoforms in rice and Arabidopsis suggests potential orthologous relationships for all 43 rice P-type ATPases. A phylogenetic comparison of protein sequences and intron positions indicates that the common angiosperm ancestor had at least 23 P-type ATPases. Although little is known about unique and common features of related pumps, clear differences between some members of the calcium pumps indicate that evolutionarily conserved clusters may distinguish pumps with either different subcellular locations or biochemical functions.


Annual Review of Plant Biology | 2008

Ionomics and the Study of the Plant Ionome

David E. Salt; Ivan Baxter; Brett Lahner

The ionome is defined as the mineral nutrient and trace element composition of an organism and represents the inorganic component of cellular and organismal systems. Ionomics, the study of the ionome, involves the quantitative and simultaneous measurement of the elemental composition of living organisms and changes in this composition in response to physiological stimuli, developmental state, and genetic modifications. Ionomics requires the application of high-throughput elemental analysis technologies and their integration with both bioinformatic and genetic tools. Ionomics has the ability to capture information about the functional state of an organism under different conditions, driven by genetic and developmental differences and by biotic and abiotic factors. The relatively high throughput and low cost of ionomic analysis means that it has the potential to provide a powerful approach to not only the functional analysis of the genes and gene networks that directly control the ionome, but also to the more extended gene networks that control developmental and physiological processes that affect the ionome indirectly. In this review we describe the analytical and bioinformatics aspects of ionomics, as well as its application as a functional genomics tool.


PLOS Genetics | 2005

Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis

Ana Rus; Ivan Baxter; Balasubramaniam Muthukumar; Jeff Gustin; Brett Lahner; Elena Yakubova; David E. Salt

Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively), accumulate higher shoot levels of Na+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1–1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics). Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes.


PLOS Genetics | 2010

A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1

Ivan Baxter; Jessica N. Brazelton; Danni Yu; Yu S. Huang; Brett Lahner; Elena Yakubova; Yan Li; Joy Bergelson; Justin O. Borevitz; Magnus Nordborg; Olga Vitek; David E. Salt

The genetic model plant Arabidopsis thaliana, like many plant species, experiences a range of edaphic conditions across its natural habitat. Such heterogeneity may drive local adaptation, though the molecular genetic basis remains elusive. Here, we describe a study in which we used genome-wide association mapping, genetic complementation, and gene expression studies to identify cis-regulatory expression level polymorphisms at the AtHKT1;1 locus, encoding a known sodium (Na+) transporter, as being a major factor controlling natural variation in leaf Na+ accumulation capacity across the global A. thaliana population. A weak allele of AtHKT1;1 that drives elevated leaf Na+ in this population has been previously linked to elevated salinity tolerance. Inspection of the geographical distribution of this allele revealed its significant enrichment in populations associated with the coast and saline soils in Europe. The fixation of this weak AtHKT1;1 allele in these populations is genetic evidence supporting local adaptation to these potentially saline impacted environments.


Current Opinion in Plant Biology | 2015

Lights, camera, action: high-throughput plant phenotyping is ready for a close-up

Noah Fahlgren; Malia A. Gehan; Ivan Baxter

Anticipated population growth, shifting demographics, and environmental variability over the next century are expected to threaten global food security. In the face of these challenges, crop yield for food and fuel must be maintained and improved using fewer input resources. In recent years, genetic tools for profiling crop germplasm has benefited from rapid advances in DNA sequencing, and now similar advances are needed to improve the throughput of plant phenotyping. We highlight recent developments in high-throughput plant phenotyping using robotic-assisted imaging platforms and computer vision-assisted analysis tools.


PLOS Genetics | 2005

Variation in Molybdenum Content Across Broadly Distributed Populations of Arabidopsis thaliana Is Controlled by a Mitochondrial Molybdenum Transporter (MOT1)

Ivan Baxter; Balasubramaniam Muthukumar; Hyeong Cheol Park; Peter Buchner; Brett Lahner; John Danku; Keyan Zhao; Joohyun Lee; Malcolm J. Hawkesford; Mary Lou Guerinot; David E. Salt

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions is reduced. Reciprocal grafting experiments demonstrate that the roots of Ler-0 are responsible for the low Mo accumulation in shoot, and GUS localization demonstrates that MOT1 is expressed strongly in the roots. MOT1 contains an N-terminal mitochondrial targeting sequence and expression of MOT1 tagged with GFP in protoplasts and transgenic plants, establishing the mitochondrial localization of this protein. Furthermore, expression of MOT1 specifically enhances Mo accumulation in yeast by 5-fold, consistent with MOT1 functioning as a molybdate transporter. This work provides the first molecular insight into the processes that regulate Mo accumulation in plants and shows that novel loci can be detected by association mapping.


PLOS Genetics | 2009

Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in Arabidopsis

Ivan Baxter; Prashant S. Hosmani; Ana Rus; Brett Lahner; Justin O. Borevitz; Balasubramaniam Muthukumar; Michael V. Mickelbart; Lukas Schreiber; Rochus Franke; David E. Salt

Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1) mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana

Justin O. Borevitz; Samuel P. Hazen; Todd P. Michael; Geoffrey P. Morris; Ivan Baxter; Tina T. Hu; Huaming Chen; Jonathan D. Werner; Magnus Nordborg; David E. Salt; Steve A. Kay; Joanne Chory; Detlef Weigel; Jonathan D. G. Jones; Joseph R. Ecker

We used hybridization to the ATH1 gene expression array to interrogate genomic DNA diversity in 23 wild strains (accessions) of Arabidopsis thaliana (arabidopsis), in comparison with the reference strain Columbia (Col). At <1% false discovery rate, we detected 77,420 single-feature polymorphisms (SFPs) with distinct patterns of variation across the genome. Total and pair-wise diversity was higher near the centromeres and the heterochromatic knob region, but overall diversity was positively correlated with recombination rate (R2 = 3.1%). The difference between total and pair-wise SFP diversity is a relative measure contrasting diversifying or frequency-dependent selection, similar to Tajimas D, and can be calibrated by the empirical genome-wide distribution. Each unique locus, centered on a gene, has a diversity and selection score that suggest a relative role in past evolutionary processes. Homologs of disease resistance (R) genes include members with especially high levels of diversity often showing frequency-dependent selection and occasionally evidence of a past selective sweep. Receptor-like and S-locus proteins also contained members with elevated levels of diversity and signatures of selection, whereas other gene families, bHLH, F-box, and RING finger proteins, showed more typical levels of diversity. SFPs identified with the gene expression array also provide an empirical hybridization polymorphism background for studies of gene expression polymorphism and are available through the genome browser http://signal.salk.edu/cgi-bin/AtSFP.


The Plant Cell | 2009

The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

Joe Morrissey; Ivan Baxter; Joohyun Lee; Liangtao Li; Brett Lahner; Natasha Grotz; Jerry Kaplan; David E. Salt; Mary Lou Guerinot

Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin (FPN) is the sole iron efflux transporter identified to date in animals, and there are two closely related orthologs in Arabidopsis thaliana, IRON REGULATED1 (IREG1/FPN1) and IREG2/FPN2. FPN1 localizes to the plasma membrane and is expressed in the stele, suggesting a role in vascular loading; FPN2 localizes to the vacuole and is expressed in the two outermost layers of the root in response to iron deficiency, suggesting a role in buffering metal influx. Consistent with these roles, fpn2 has a diminished iron deficiency response, whereas fpn1 fpn2 has an elevated iron deficiency response. Ferroportins also play a role in cobalt homeostasis; a survey of Arabidopsis accessions for ionomic phenotypes showed that truncation of FPN2 results in elevated shoot cobalt levels and leads to increased sensitivity to the metal. Conversely, loss of FPN1 abolishes shoot cobalt accumulation, even in the cobalt accumulating mutant frd3. Consequently, in the fpn1 fpn2 double mutant, cobalt cannot move to the shoot via FPN1 and is not sequestered in the root vacuoles via FPN2; instead, cobalt likely accumulates in the root cytoplasm causing fpn1 fpn2 to be even more sensitive to cobalt than fpn2 mutants.

Collaboration


Dive into the Ivan Baxter's collaboration.

Top Co-Authors

Avatar

David E. Salt

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen A. Hoekenga

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max J. Feldman

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

John Danku

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar

Olga Vitek

Northeastern University

View shared research outputs
Top Co-Authors

Avatar

Greg Ziegler

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge