Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleni Sakka is active.

Publication


Featured researches published by Eleni Sakka.


Lancet Neurology | 2015

Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third international stroke trial (IST-3): Secondary analysis of a randomised controlled trial

Joanna M. Wardlaw; Peter Sandercock; Geoff Cohen; Andrew J. Farrall; Richard Lindley; Rudiger von Kummer; Anders von Heijne; Nick Bradey; André Peeters; L.A. Cala; Alessandro Adami; Zoe Morris; Gillian M. Potter; Gordon Murray; Will Whiteley; David Perry; Eleni Sakka

Summary Background Brain scans are essential to exclude haemorrhage in patients with suspected acute ischaemic stroke before treatment with alteplase. However, patients with early ischaemic signs could be at increased risk of haemorrhage after alteplase treatment, and little information is available about whether pre-existing structural signs, which are common in older patients, affect response to alteplase. We aimed to investigate the association between imaging signs on brain CT and outcomes after alteplase. Methods IST-3 was a multicentre, randomised controlled trial of intravenous alteplase (0·9 mg/kg) versus control within 6 h of acute ischaemic stroke. The primary outcome was independence at 6 months (defined as an Oxford Handicap Scale [OHS] score of 0–2). 3035 patients were enrolled to IST-3 and underwent prerandomisation brain CT. Experts who were unaware of the random allocation assessed scans for early signs of ischaemia (tissue hypoattenuation, infarct extent, swelling, and hyperattenuated artery) and pre-existing signs (old infarct, leukoaraiosis, and atrophy). In this prespecified analysis, we assessed interactions between these imaging signs, symptomatic intracranial haemorrhage (a secondary outcome in IST-3) and independence at 6 months, and alteplase, adjusting for age, National Institutes of Health Stroke Scale (NIHSS) score, and time to randomisation. This trial is registered at ISRCTN.com, number ISRCTN25765518. Findings 3017 patients were assessed in this analysis, of whom 1507 were allocated alteplase and 1510 were assigned control. A reduction in independence was predicted by tissue hypoattenuation (odds ratio 0·66, 95% CI 0·55–0·81), large lesion (0·51, 0·38–0·68), swelling (0·59, 0·46–0·75), hyperattenuated artery (0·59, 0·47–0·75), atrophy (0·74, 0·59–0·94), and leukoaraiosis (0·72, 0·59–0·87). Symptomatic intracranial haemorrhage was predicted by old infarct (odds ratio 1·72, 95% CI 1·18–2·51), tissue hypoattenuation (1·54, 1·04–2·27), and hyperattenuated artery (1·54, 1·03–2·29). Some combinations of signs increased the absolute risk of symptomatic intracranial haemorrhage (eg, both old infarct and hyperattenuated artery, excess with alteplase 13·8%, 95% CI 6·9–20·7; both signs absent, excess 3·2%, 1·4–5·1). However, no imaging findings—individually or combined—modified the effect of alteplase on independence or symptomatic intracranial haemorrhage. Interpretation Some early ischaemic and pre-existing signs were associated with reduced independence at 6 months and increased symptomatic intracranial haemorrhage. Although no interaction was noted between brain imaging signs and effects of alteplase on these outcomes, some combinations of signs increased some absolute risks. Pre-existing signs should be considered, in addition to early ischaemic signs, during the assessment of patients with acute ischaemic stroke. Funding UK Medical Research Council, Health Foundation UK, Stroke Association UK, Chest Heart Stroke Scotland, Scottish Funding Council SINAPSE Collaboration, and multiple governmental and philanthropic national funders.


Journal of Cerebral Blood Flow and Metabolism | 2017

Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease

Susana Muñoz Maniega; Francesca M. Chappell; Maria del C. Valdés Hernández; Paul A. Armitage; Stephen Makin; Anna K. Heye; Michael J. Thrippleton; Eleni Sakka; Kirsten Shuler; Martin Dennis; Joanna M. Wardlaw

White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood–brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3–90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities (P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age (P < 0.001), all biomarkers varied with white matter hyperintensities burden (P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension (P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood–brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood–brain barrier leakage mediates small vessel disease-related brain damage.


NeuroImage | 2016

Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability

Anna K. Heye; Michael J. Thrippleton; Paul A. Armitage; Maria del C. Valdés Hernández; Stephen Makin; Andreas Glatz; Eleni Sakka; Joanna M. Wardlaw

There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability states, which has the potential to provide valuable information regarding BBB integrity in a range of diseases. However, absolute values of the resulting tracer kinetic parameters should be interpreted with extreme caution, and the size and influence of signal drift should be measured where possible.


Neurobiology of Aging | 2016

Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936

David Alexander Dickie; Stuart J. Ritchie; Simon R. Cox; Eleni Sakka; Natalie A. Royle; Benjamin S. Aribisala; Maria del C. Valdés Hernández; Susana Muñoz Maniega; Alison Pattie; Janie Corley; Mark E. Bastin; Ian J. Deary; Joanna M. Wardlaw

We aimed to determine associations between multiple vascular risk factors (VRF) at ∼73 years and progression of white matter hyperintensities (WMH) from ∼73 years to ∼76 years. We calculated correlations and generalized estimating equation models of a comprehensive range of VRF at 73 years and change in WMH volume from 73 years to 76 years. Higher systolic (rho = 0.126, p = 0.009) and diastolic (rho = 0.120, p = 0.013) blood pressure at 73 years were significant predictors for greater WMH volume at 76 years in a simple correlation model. However, neither measured blood pressure nor self-reported hypertension at 73 years was significant predictors of WMH volume change in a fully adjusted model which accounted for initial WMH volume at 73 years. Lower high-density lipoprotein cholesterol (beta = −0.15 % intracranial, −1.80 mL; p < 0.05) and current smoking (beta = 0.43 % intracranial, 5.49 mL; p < 0.05) were the only significant VRF predictors of WMH volume change from 73 years to 76 years. A focus on smoking cessation and lipid lowering, not just antihypertensives, may lead to a reduction in WMH growth in the eighth decade of life.


Alzheimers & Dementia | 2017

Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study

Joanna M. Wardlaw; Stephen Makin; Maria del C. Valdés Hernández; Paul A. Armitage; Anna K. Heye; Francesca M. Chappell; Susana Munoz-Maniega; Eleni Sakka; Kirsten Shuler; Martin Dennis; Michael J. Thrippleton

Small vessel disease (SVD) is a common contributor to dementia. Subtle blood‐brain barrier (BBB) leakage may be important in SVD‐induced brain damage.


Journal of Cerebral Blood Flow and Metabolism | 2016

Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease:

Anna K. Heye; Michael J. Thrippleton; Francesca M. Chappell; Maria del C. Valdés Hernández; Paul A. Armitage; Stephen Makin; Susana Muñoz Maniega; Eleni Sakka; Peter W. Flatman; Martin Dennis; Joanna M. Wardlaw

Dietary salt intake and hypertension are associated with increased risk of cardiovascular disease including stroke. We aimed to explore the influence of these factors, together with plasma sodium concentration, in cerebral small vessel disease (SVD). In all, 264 patients with nondisabling cortical or lacunar stroke were recruited. Patients were questioned about their salt intake and plasma sodium concentration was measured; brain tissue volume and white-matter hyperintensity (WMH) load were measured using structural magnetic resonance imaging (MRI) while diffusion tensor MRI and dynamic contrast-enhanced MRI were acquired to assess underlying tissue integrity. An index of added salt intake (P = 0.021), pulse pressure (P = 0.036), and diagnosis of hypertension (P = 0.0093) were positively associated with increased WMH, while plasma sodium concentration was associated with brain volume (P = 0.019) but not with WMH volume. These results are consistent with previous findings that raised blood pressure is associated with WMH burden and raise the possibility of an independent role for dietary salt in the development of cerebral SVD.


Neurology | 2017

White matter hyperintensity reduction and outcomes after minor stroke

Joanna M. Wardlaw; Francesca M. Chappell; Maria del C. Valdés Hernández; Stephen Makin; Julie Staals; Kirsten Shuler; Michael J. Thrippleton; Paul A. Armitage; Susana Munoz-Maniega; Anna K. Heye; Eleni Sakka; Martin Dennis

Objective: To assess factors associated with white matter hyperintensity (WMH) change in a large cohort after observing obvious WMH shrinkage 1 year after minor stroke in several participants in a longitudinal study. Methods: We recruited participants with minor ischemic stroke and performed clinical assessments and brain MRI. At 1 year, we assessed recurrent cerebrovascular events and dependency and repeated the MRI. We assessed change in WMH volume from baseline to 1 year (normalized to percent intracranial volume [ICV]) and associations with baseline variables, clinical outcomes, and imaging parameters using multivariable analysis of covariance, model of changes, and multinomial logistic regression. Results: Among 190 participants (mean age 65.3 years, range 34.3–96.9 years, 112 [59%] male), WMH decreased in 71 participants by 1 year. At baseline, participants whose WMH decreased had similar WMH volumes but higher blood pressure (p = 0.0064) compared with participants whose WMH increased. At 1 year, participants with WMH decrease (expressed as percent ICV) had larger reductions in blood pressure (β = 0.0053, 95% confidence interval [CI] 0.00099–0.0097 fewer WMH per 1–mm Hg decrease, p = 0.017) and in mean diffusivity in normal-appearing white matter (β = 0.075, 95% CI 0.0025–0.15 fewer WMH per 1-unit mean diffusivity decrease, p = 0.043) than participants with WMH increase; those with WMH increase experienced more recurrent cerebrovascular events (32%, vs 16% with WMH decrease, β = 0.27, 95% CI 0.047–0.50 more WMH per event, p = 0.018). Conclusions: Some WMH may regress after minor stroke, with potentially better clinical and brain tissue outcomes. The role of risk factor control requires verification. Interstitial fluid alterations may account for some WMH reversibility, offering potential intervention targets.


Journal of Stroke & Cerebrovascular Diseases | 2017

Cerebral White Matter Hypoperfusion Increases with Small-Vessel Disease Burden. Data From the Third International Stroke Trial

Francesco Arba; Grant Mair; Trevor Carpenter; Eleni Sakka; Peter Sandercock; Richard Lindley; Domenico Inzitari; Joanna M. Wardlaw

BACKGROUND Leukoaraiosis is associated with impaired cerebral perfusion, but the effect of individual and combined small-vessel disease (SVD) features on white matter perfusion is unclear. METHODS We studied patients recruited with perfusion imaging in the Third International Stroke Trial. We rated individual SVD features (leukoaraiosis, lacunes) and brain atrophy on baseline plain computed tomography or magnetic resonance imaging. Separately, we assessed white matter at the level of the lateral ventricles in the cerebral hemisphere contralateral to the stroke for visible areas of hypoperfusion (present or absent) on 4 time-based perfusion imaging parameters. We examined associations between SVD features (individually and summed) and presence of hypoperfusion using logistic regression adjusted for age, sex, baseline National Institutes of Health Stroke Scale, hypertension, and diabetes. RESULTS A total of 115 patients with median (interquartile range) age of 81 (72-86) years, 78 (52%) of which were male, had complete perfusion data. Hypoperfusion was most frequent on mean transit time (MTT; 63 patients, 55%) and least frequent on time to maximum flow (19 patients, 17%). The SVD score showed stronger independent associations with hypoperfusion (e.g., MTT, odds ratio [OR] = 2.80; 95% confidence interval [CI] = 1.56-5.03) than individual SVD markers (e.g., white matter hypoattenuation score, MTT, OR = 1.49, 95% CI = 1.09-2.04). Baseline blood pressure did not differ by presence or absence of hypoperfusion or across strata of SVD score. Presence of white matter hypoperfusion increased with SVD summed score. CONCLUSIONS The SVD summed score was associated with hypoperfusion more consistently than individual SVD features, providing validity to the SVD score concept. Increasing SVD burden indicates worse perfusion in the white matter.


Stroke | 2016

Progression of White Matter Disease and Cortical Thinning Are Not Related in Older Community-Dwelling Subjects

David Alexander Dickie; Sherif Karama; Stuart J. Ritchie; Simon R. Cox; Eleni Sakka; Natalie A. Royle; Benjamin S. Aribisala; Maria del C. Valdés Hernández; Susana Muñoz Maniega; Alison Pattie; Janie Corley; Mark E. Bastin; Alan C. Evans; Ian J. Deary; Joanna M. Wardlaw

Background and Purpose— We assessed cross-sectional and longitudinal relationships between whole brain white matter hyperintensity (WMH) volume and regional cortical thickness. Methods— We measured WMH volume and regional cortical thickness on magnetic resonance imaging at ≈73 and ≈76 years in 351 community-dwelling subjects from the Lothian Birth Cohort 1936. We used multiple linear regression to calculate cross-sectional and longitudinal associations between regional cortical thickness and WMH volume controlling for age, sex, Mini Mental State Examination, education, intelligence quotient at age 11, and vascular risk factors. Results— We found cross-sectional associations between WMH volume and cortical thickness within and surrounding the Sylvian fissure at 73 and 76 years (rho=−0.276, Q=0.004). However, we found no significant longitudinal associations between (1) baseline WMH volume and change in cortical thickness; (2) baseline cortical thickness and change in WMH volume; or (3) change in WMH volume and change in cortical thickness. Conclusions— Our results show that WMH volume and cortical thinning both worsen with age and are associated cross-sectionally within and surrounding the Sylvian fissure. However, changes in WMH volume and cortical thinning from 73 to 76 years are not associated longitudinally in these relatively healthy older subjects. The underlying cause(s) of WMH growth and cortical thinning have yet to be fully determined.


Stroke | 2017

Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke

Grant Mair; Rüdiger von Kummer; Alessandro Adami; Philip White; Matthew E. Adams; Bernard Yan; Andrew M. Demchuk; Andrew J. Farrall; Robin Sellar; Eleni Sakka; Jeb Palmer; David Perry; Richard Lindley; Peter Sandercock; Joanna M. Wardlaw

Background and Purpose— Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. Methods— We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. Results— In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18–3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58–1.35; P=0.566) arterial obstruction (P for interaction 0.017). Conclusions— Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. Clinical Trial Registration— URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518.

Collaboration


Dive into the Eleni Sakka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Sandercock

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar

Grant Mair

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeb Palmer

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoff Cohen

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Karen Innes

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge