Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Napoli is active.

Publication


Featured researches published by Eleonora Napoli.


Science | 2017

Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion

Mariana X. Byndloss; Erin E. Olsan; Fabian Rivera-Chávez; Connor R. Tiffany; Stephanie A. Cevallos; Kristen L. Lokken; Teresa P. Torres; Austin J. Byndloss; Franziska Faber; Yandong Gao; Yael Litvak; Christopher A. Lopez; Gege Xu; Eleonora Napoli; Cecilia Giulivi; Renée M. Tsolis; Alexander Revzin; Carlito B. Lebrilla; Andreas J. Bäumler

Healthy guts exclude oxygen Normally, the lumen of the colon lacks oxygen. Fastidiously anaerobic butyrate-producing bacteria thrive in the colon; by ablating these organisms, antibiotic treatment removes butyrate. Byndloss et al. discovered that loss of butyrate deranges metabolic signaling in gut cells (see the Perspective by Cani). This induces nitric oxidase to generate nitrate in the lumen and disables β-oxidation in epithelial cells that would otherwise mop up stray oxygen before it enters the colon. Simultaneously, regulatory T cells retreat, and inflammation is unchecked, which contributes yet more oxygen species to the colon. Then, facultative aerobic pathogens, such as Escherichia coli and Salmonella enterica, can take advantage of the altered environment and outgrow any antibiotic-crippled and benign anaerobes. Science, this issue p. 570; see also p. 548 Butyrate-producing microbes contribute to synergism between epithelial cell metabolism and immune response regulation to maintain gut heath. Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator–activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward β-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Human Molecular Genetics | 2011

ALTERED ZINC TRANSPORT DISRUPTS MITOCHONDRIAL PROTEIN PROCESSING/IMPORT IN FRAGILE X-ASSOCIATED TREMOR/ATAXIA SYNDROME

Eleonora Napoli; Catherine Ross-Inta; Sarah Wong; Alicja Omanska-Klusek; Cedrick Barrow; Christine Iwahashi; Danielle Sakaguchi; Elizabeth Berry-Kravis; Randi J. Hagerman; Paul J. Hagerman; Cecilia Giulivi

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects individuals who are carriers of small CGG premutation expansions in the fragile X mental retardation 1 (FMR1) gene. Mitochondrial dysfunction was observed as an incipient pathological process occurring in individuals who do not display overt features of FXTAS (1). Fibroblasts from premutation carriers had lower oxidative phosphorylation capacity (35% of controls) and Complex IV activity (45%), and higher precursor-to-mature ratios (P:M) of nDNA-encoded mitochondrial proteins (3.1-fold). However, fibroblasts from carriers with FXTAS symptoms presented higher FMR1 mRNA expression (3-fold) and lower Complex V (38%) and aconitase activities (43%). Higher P:M of ATPase β-subunit (ATPB) and frataxin were also observed in cortex from patients that died with FXTAS symptoms. Biochemical findings observed in FXTAS cells (lower mature frataxin, lower Complex IV and aconitase activities) along with common phenotypic traits shared by Friedreichs ataxia and FXTAS carriers (e.g. gait ataxia, loss of coordination) are consistent with a defective iron homeostasis in both diseases. Higher P:M, and lower ZnT6 and mature frataxin protein expression suggested defective zinc and iron metabolism arising from altered ZnT protein expression, which in turn impairs the activity of mitochondrial Zn-dependent proteases, critical for the import and processing of cytosolic precursors, such as frataxin. In support of this hypothesis, Zn-treated fibroblasts showed a significant recovery of ATPB P:M, ATPase activity and doubling time, whereas Zn and desferrioxamine extended these recoveries and rescued Complex IV activity.


PLOS ONE | 2012

Mitochondrial Dysfunction in Pten Haplo-Insufficient Mice with Social Deficits and Repetitive Behavior: Interplay between Pten and p53

Eleonora Napoli; Catherine Ross-Inta; Sarah Wong; Connie Hung; Yasuko Fujisawa; Danielle Sakaguchi; James M. Angelastro; Alicja Omanska-Klusek; Robert Schoenfeld; Cecilia Giulivi

Etiology of aberrant social behavior consistently points to a strong polygenetic component involved in fundamental developmental pathways, with the potential of being enhanced by defects in bioenergetics. To this end, the occurrence of social deficits and mitochondrial outcomes were evaluated in conditional Pten (Phosphatase and tensin homolog) haplo-insufficient mice, in which only one allele was selectively knocked-out in neural tissues. Pten mutations have been linked to Alzheimers disease and syndromic autism spectrum disorders, among others. By 4–6 weeks of age, Pten insufficiency resulted in the increase of several mitochondrial Complex activities (II–III, IV and V) not accompanied by increases in mitochondrial mass, consistent with an activation of the PI3K/Akt pathway, of which Pten is a negative modulator. At 8–13 weeks of age, Pten haplo-insufficient mice did not show significant behavioral abnormalities or changes in mitochondrial outcomes, but by 20–29 weeks, they displayed aberrant social behavior (social avoidance, failure to recognize familiar mouse, and repetitive self-grooming), macrocephaly, increased oxidative stress, decreased cytochrome c oxidase (CCO) activity (50%) and increased mtDNA deletions in cerebellum and hippocampus. Mitochondrial dysfunction was the result of a downregulation of p53-signaling pathway evaluated by lower protein expression of p21 (65% of controls) and the CCO chaperone SCO2 (47% of controls), two p53-downstream targets. This mechanism was confirmed in Pten-deficient striatal neurons and, HCT 116 cells with different p53 gene dosage. These results suggest a unique pathogenic mechanism of the Pten-p53 axis in mice with aberrant social behavior: loss of Pten (via p53) impairs mitochondrial function elicited by an early defective assembly of CCO and later enhanced by the accumulation of mtDNA deletions. Consistent with our results, (i) SCO2 deficiency and/or CCO activity defects have been reported in patients with learning disabilities including autism and (ii) mutated proteins in ASD have been found associated with p53-signaling pathways.


Antioxidants & Redox Signaling | 2013

Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.

Yuxi Shan; Robert Schoenfeld; Genki Hayashi; Eleonora Napoli; Tasuku Akiyama; Mirela Iodi Carstens; E. Carstens; Mark A. Pook; Gino Cortopassi

AIMS Oxidative stress is thought to be involved in Friedreichs ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease. RESULTS YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin. INNOVATION AND CONCLUSION These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.


Pediatrics | 2014

Deficits in bioenergetics and impaired immune response in granulocytes from children with autism.

Eleonora Napoli; Sarah Wong; Irva Hertz-Picciotto; Cecilia Giulivi

Despite the emerging role of mitochondria in immunity, a link between bioenergetics and the immune response in autism has not been explored. Mitochondrial outcomes and phorbol 12-myristate 13-acetate (PMA)–induced oxidative burst were evaluated in granulocytes from age-, race-, and gender-matched children with autism with severity scores of ≥7 (n = 10) and in typically developing (TD) children (n = 10). The oxidative phosphorylation capacity of granulocytes was 3-fold lower in children with autism than in TD children, with multiple deficits encompassing ≥1 Complexes. Higher oxidative stress in cells of children with autism was evidenced by higher rates of mitochondrial reactive oxygen species production (1.6-fold), higher mitochondrial DNA copy number per cell (1.5-fold), and increased deletions. Mitochondrial dysfunction in children with autism was accompanied by a lower (26% of TD children) oxidative burst by PMA-stimulated reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and by a lower gene expression (45% of TD childrens mean values) of the nuclear factor erythroid 2–related factor 2 transcription factor involved in the antioxidant response. Given that the majority of granulocytes of children with autism exhibited defects in oxidative phosphorylation, immune response, and antioxidant defense, our results support the concept that immunity and response to oxidative stress may be regulated by basic mitochondrial functions as part of an integrated metabolic network.


Human Molecular Genetics | 2013

Defective Mitochondrial Disulfide Relay System, altered mitochondrial morphology and function in Huntington’s disease

Eleonora Napoli; Sarah Wong; Connie Hung; Catherine Ross-Inta; Prithvi Bomdica; Cecilia Giulivi

A number of studies have been conducted that link mitochondrial dysfunction (MD) to Huntingtons disease (HD); however, contradicting results had resulted in a lack of a clear mechanism that links expression of mutant Huntingtin protein and MD. Mouse homozygous (HM) and heterozygous (HT) mutant striatal cells with two or one allele encoding for a mutant huntingtin protein with 111 polyGln repeats showed a significant impairment of the mitochondrial disulfide relay system (MDRS). This system (consisting of two proteins, Gfer and Mia40) is involved in the mitochondrial import of Cys-rich proteins. The Gfer-to-Mia40 ratio was significantly altered in HM cells compared with controls, along with the expression of mitochondrial proteins considered substrates of the MDRS. In progenitors and differentiated neuron-like HM cells, impairment of MDRS were accompanied by deficient oxidative phosphorylation, Complex I, IV and V activities, decreased mtDNA copy number and transcripts, accumulation of mtDNA deletions and changes in mitochondrial morphology, consistent with other MDRS-deficient biological models, thus providing a framework for the energy deficits observed in this HD model. The majority (>90%) of the mitochondrial outcomes exhibited a gene-dose dependency with the expression of mutant Htt. Finally, decreases in the mtDNA copy number, along with the accumulation of mtDNA deletions, provide a mechanism for the progressive neurodegeneration observed in HD patients.


PLOS Pathogens | 2013

Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

Shirley Luckhart; Cecilia Giulivi; Anna L. Drexler; Yevgeniya Antonova-Koch; Danielle Sakaguchi; Eleonora Napoli; Sarah Wong; Mark S. Price; Richard A. Eigenheer; Brett S. Phinney; Nazzy Pakpour; Jose E. Pietri; Kong Cheung; Martha Georgis; Michael A. Riehle

The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the midgut is necessary for the maintenance of midgut health as reflected in energy homeostasis and tissue repair and renewal.


Journal of Biological Chemistry | 2011

Basal Bioenergetic Abnormalities in Skeletal Muscle from Ryanodine Receptor Malignant Hyperthermia-susceptible R163C Knock-in Mice

Cecilia Giulivi; Catherine Ross-Inta; Alicja Omanska-Klusek; Eleonora Napoli; Danielle Sakaguchi; Genaro Barrientos; Paul D. Allen; Isaac N. Pessah

Malignant hyperthermia (MH) and central core disease in humans have been associated with mutations in the skeletal ryanodine receptor (RyR1). Heterozygous mice expressing the human MH/central core disease RyR1 R163C mutation exhibit MH when exposed to halothane or heat stress. Considering that many MH symptoms resemble those that could ensue from a mitochondrial dysfunction (e.g. metabolic acidosis and hyperthermia) and that MH-susceptible mice or humans have a higher than normal cytoplasmic Ca2+ concentration at rest, we evaluated the role of mitochondria in skeletal muscle from R163C compared with wild type mice under basal (untriggered) conditions. R163C skeletal muscle exhibited a significant increase in matrix Ca2+, increased reactive oxygen species production, lower expression of mitochondrial proteins, and higher mtDNA copy number. These changes, in conjunction with lower myoglobin and glycogen contents, Myh4 and GAPDH transcript levels, GAPDH activity, and lower glucose utilization suggested a switch to a compromised bioenergetic state characterized by both low oxidative phosphorylation and glycolysis. The shift in bioenergetic state was accompanied by a dysregulation of Ca2+-responsive signaling pathways regulated by calcineurin and ERK1/2. Chronically elevated resting Ca2+ in R163C skeletal muscle elicited the maintenance of a fast-twitch fiber program and the development of insulin resistance-like phenotype as part of a metabolic adaptation to the R163C RyR1 mutation.


Frontiers in Pediatrics | 2014

Potential Therapeutic Use of the Ketogenic Diet in Autism Spectrum Disorders

Eleonora Napoli; Nadia Dueñas; Cecilia Giulivi

The ketogenic diet (KGD) has been recognized as an effective treatment for individuals with glucose transporter 1 (GLUT1) and pyruvate dehydrogenase (PDH) deficiencies as well as with epilepsy. More recently, its use has been advocated in a number of neurological disorders prompting a newfound interest in its possible therapeutic use in autism spectrum disorders (ASD). One study and one case report indicated that children with ASD treated with a KGD showed decreased seizure frequencies and exhibited behavioral improvements (i.e., improved learning abilities and social skills). The KGD could benefit individuals with ASD affected with epileptic episodes as well as those with either PDH or mild respiratory chain (RC) complex deficiencies. Given that the mechanism of action of the KGD is not fully understood, caution should be exercised in ASD cases lacking a careful biochemical and metabolic characterization to avoid deleterious side effects or refractory outcomes.


Translational Stroke Research | 2016

Recent Advances in Stem Cell-Based Therapeutics for Stroke

Eleonora Napoli; Cesar V. Borlongan

Regenerative medicine has advanced the efficacy of exogenous and endogenous stem cells in restoring central nervous system disorders (CNS) in the aged and diseased brain [1–3]. Stem cell therapy has been examined in numerous neurological disorders, with highly encouraging results suggesting its indication as a stroke treatment [4–6]. In this regard, despite the availability of the thrombolytic agent tissue plasminogen activator (tPA) for stroke, its narrow therapeutic window and associated adverse events have not resolved the disease stigma as a major cause of mortality and morbidity around the world. Because stem cell therapy targets the subacute and chronic phases of stroke, thereby significantly extending the effective time of intervention, many patients are likely to benefit from this treatment. Several types of transplantable cells have been tested in the laboratory, with a few reaching clinical trials for cell therapy in stroke, including fetal cells, NT2N cells, CTX0E3, embryonic stem cells, neural stem/progenitor cells, umbilical cord blood, amnion, adipose, and induced pluripotent stem cells [7–12]. Primarily, due to solid safety profile in other disease indications, preclinical studies and ongoing clinical trials have given special attention to bone marrow and its cellular derivatives [13, 14]. Direct intracerebral implantation and peripheral transplantation, such as intravenous, intraarterial, and intranasal, have documented the functional benefits of bone marrow-derived stem cells [13, 15–18]. Clinical trials have been initiated, and preliminary reports have demonstrated safety, although efficacy warrants additional investigations [14]. Here, we discuss the various sources and profiles of stem cells, with particular interest in the adult tissuederived mesenchymal stem cells, their use in cell transplantation, translational challenges, and putative need for adjunctive therapies. Finally, we reflect on the current societal views that stem cell therapy in general has provoked in the public domain. Our goal is to assess the science behind regenerative medicine in an effort to advance the safe, effective, and mechanism-based application of cell therapy for stroke.

Collaboration


Dive into the Eleonora Napoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Wong

University of California

View shared research outputs
Top Co-Authors

Avatar

Gyu Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Flora Tassone

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cesar V. Borlongan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Connie Hung

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge