Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Parlanti is active.

Publication


Featured researches published by Eleonora Parlanti.


The EMBO Journal | 2006

New functions of XPC in the protection of human skin cells from oxidative damage

Mariarosaria D'Errico; Eleonora Parlanti; Massimo Teson; Bruno M. Bernardes de Jesus; Paolo Degan; Angelo Calcagnile; Pawel Jaruga; Magnar Bjørås; Marco Crescenzi; Antonia M. Pedrini; Jean-Marc Egly; Giovanna Zambruno; Miria Stefanini; Miral Dizdaroglu; Eugenia Dogliotti

Xeroderma pigmentosum (XP) C is involved in the recognition of a variety of bulky DNA‐distorting lesions in nucleotide excision repair. Here, we show that XPC plays an unexpected and multifaceted role in cell protection from oxidative DNA damage. XP‐C primary keratinocytes and fibroblasts are hypersensitive to the killing effects of DNA‐oxidizing agents and this effect is reverted by expression of wild‐type XPC. Upon oxidant exposure, XP‐C primary keratinocytes and fibroblasts accumulate 8,5′‐cyclopurine 2′‐deoxynucleosides in their DNA, indicating that XPC is involved in their removal. In the absence of XPC, a decrease in the repair rate of 8‐hydroxyguanine (8‐OH‐Gua) is also observed. We demonstrate that XPC–HR23B complex acts as cofactor in base excision repair of 8‐OH‐Gua, by stimulating the activity of its specific DNA glycosylase OGG1. In vitro experiments suggest that the mechanism involved is a combination of increased loading and turnover of OGG1 by XPC‐HR23B complex. The accumulation of endogenous oxidative DNA damage might contribute to increased skin cancer risk and account for internal cancers reported for XP‐C patients.


Current Biology | 2002

The Mammalian Mismatch Repair Pathway Removes DNA 8-oxodGMP Incorporated from the Oxidized dNTP Pool

Claudia Colussi; Eleonora Parlanti; Paolo Degan; Gabriele Aquilina; Deborah E. Barnes; Peter Macpherson; Peter Karran; Marco Crescenzi; Eugenia Dogliotti; Margherita Bignami

Mismatch repair (MMR) corrects replication errors. It requires the MSH2, MSH6, MLH1, and PMS2 proteins which comprise the MutSalpha and MutLalpha heterodimers. Inactivation of MSH2 or MLH1 in human tumors greatly increases spontaneous mutation rates. Oxidation produces many detrimental DNA alterations against which cells deploy multiple protective strategies. The Ogg-1 DNA glycosylase initiates base excision repair (BER) of 8-oxoguanine (8-oxoG) from 8-oxoG:C pairs. The Myh DNA glycosylase removes mismatched adenines incorporated opposite 8-oxoG during replication. Subsequent BER generates 8-oxoG:C pairs, a substrate for excision by Ogg-1. MTH1-an 8-oxodGTPase which eliminates 8-oxodGTP from the dNTP pool-affords additional protection by minimizing 8-oxodGMP incorporation during replication. Here we show that the dNTP pool is, nevertheless, an important source of DNA 8-oxoG and that MMR provides supplementary protection by excising incorporated 8-oxodGMP. Incorporated 8-oxodGMP contributes significantly to the mutator phenotype of MMR-deficient cells. Thus, although BER of 8-oxoG is independent of Msh2, both steady-state and H(2)O(2)-induced DNA 8-oxoG levels are higher in Msh2-defective cells than in their repair-proficient counterparts. Increased expression of MTH1 in MMR-defective cells significantly reduces steady-state and H(2)O(2)-induced DNA 8-oxoG levels. This reduction dramatically diminishes the spontaneous mutation rate of Msh2(-/-) MEFs.


Oncogene | 1998

Mammalian base excision repair by DNA polymerases δ and ε

M Stucki; B Pascucci; Eleonora Parlanti; Paola Fortini; Samuel H. Wilson; Ulrich Hübscher; Eugenia Dogliotti

Two distinct pathways for completion of base excision repair (BER) have been discovered in eukaryotes: the DNA polymerase  β (Pol  β )-dependent short-patch pathway that involves the replacement of a single nucleotide and the long-patch pathway that entails the resynthesis of 2-6 nucleotides and requires PCNA. We have used cell extracts from Pol β-deleted mouse fibroblasts to separate subfractions containing either Pol δ or Pol ε. These fractions were then tested for their ability to perform both short- and long-patch BER in an in vitro repair assay, using a circular DNA template, containing a single abasic site at a defined position. Remarkably, both Pol δ and Pol ε were able to replace a single nucleotide at the lesion site, but the repair reaction is delayed compared to single nucleotide replacement by Pol β. Furthermore, our observations indicated, that either Pol δ and/or Pol ε participate in the long-patch BER. PCNA and RF-C, but not RP-A are required for this process. Our data show for the first time that Pol δ and/or Pol ε are directly involved in the long-patch BER of abasic sites and might function as back-up system for Pol β in one-gap filling reactions.


Oncogene | 2007

The role of CSA in the response to oxidative DNA damage in human cells

Mariarosaria D'Errico; Eleonora Parlanti; M Teson; P Degan; Tiziana Lemma; Angelo Calcagnile; I Iavarone; Pawel Jaruga; M Ropolo; A M Pedrini; D Orioli; Guido Frosina; G Zambruno; Miral Dizdaroglu; Miria Stefanini; Eugenia Dogliotti

Cockayne syndrome (CS) is a rare genetic disease characterized by severe growth, mental retardation and pronounced cachexia. CS is most frequently due to mutations in either of two genes, CSB and CSA. Evidence for a role of CSB protein in the repair of oxidative DNA damage has been provided recently. Here, we show that CSA is also involved in the response to oxidative stress. CS-A human primary fibroblasts and keratinocytes showed hypersensitivity to potassium bromate, a specific inducer of oxidative damage. This was associated with inefficient repair of oxidatively induced DNA lesions, namely 8-hydroxyguanine (8-OH-Gua) and (5′S)-8,5′-cyclo 2′-deoxyadenosine. Expression of the wild-type CSA in the CS-A cell line CS3BE significantly decreased the steady-state level of 8-OH-Gua and increased its repair rate following oxidant treatment. CS-A cell extracts showed normal 8-OH-Gua cleavage activity in an in vitro assay, whereas CS-B cell extracts were confirmed to be defective. Our data provide the first in vivo evidence that CSA protein contributes to prevent accumulation of various oxidized DNA bases and underline specific functions of CSB not shared with CSA. These findings support the hypothesis that defective repair of oxidative DNA damage is involved in the clinical features of CS patients.


Nucleic Acids Research | 2007

Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins

Eleonora Parlanti; Giada Locatelli; Giovanni Maga; Eugenia Dogliotti

It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and ɛ, DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks.


Biochemistry | 2011

Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating

Barbara Pascucci; Mariarosaria D’Errico; Eleonora Parlanti; S. Giovannini; Eugenia Dogliotti

DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer risk and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.


Free Radical Biology and Medicine | 2012

The cross talk between pathways in the repair of 8-oxo-7,8-dihydroguanine in mouse and human cells

Eleonora Parlanti; Mariarosaria D’Errico; Paolo Degan; Angelo Calcagnile; Andrea Zijno; Ingrid van der Pluijm; Gijsbertus T. J. van der Horst; Denis Biard; Eugenia Dogliotti

Although oxidatively damaged DNA is repaired primarily via the base excision repair (BER) pathway, it is now evident that multiple subpathways are needed. Yet, their relative contributions and coordination are still unclear. Here, mouse embryo fibroblasts (MEFs) from selected nucleotide excision repair (NER) and/or BER mouse mutants with severe (Csb(m/m)/Xpa(-/-) and Csb(m/m)/Xpc(-/-)), mild (Csb(m/m)), or no progeria (Xpa(-/-), Xpc(-/-), Ogg1(-/-), Csb(m/m)/Ogg1(-/-)) or wild-type phenotype were exposed to an oxidizing agent, potassium bromate, and genomic 8-oxo-7,8-dihydroguanine (8-oxoGua) levels were measured by HPLC-ED. The same oxidized DNA base was measured in NER/BER-defective human cell lines obtained after transfection with replicative plasmids encoding siRNA targeting DNA repair genes. We show that both BER and NER factors contribute to the repair of 8-oxoGua, although to different extents, and that the repair profiles are similar in human compared to mouse cells. The BER DNA glycosylase OGG1 dominates 8-oxoGua repair, whereas NER (XPC, XPA) and transcription-coupled repair proteins (CSB and CSA) are similar, but minor contributors. The comparison of DNA oxidation levels in double versus single defective MEFs indicates increased oxidatively damaged DNA only when both CSB and XPC/XPA are defective, indicating that these proteins operate in different pathways. Moreover, we provide the first evidence of an involvement of XPA in the control of oxidatively damaged DNA in human primary cells.


Neural Plasticity | 2016

The Response to Oxidative DNA Damage in Neurons: Mechanisms and Disease

Laura Narciso; Eleonora Parlanti; Mauro Racaniello; Valeria Simonelli; Alessio Cardinale; Daniela Merlo; Eugenia Dogliotti

There is a growing body of evidence indicating that the mechanisms that control genome stability are of key importance in the development and function of the nervous system. The major threat for neurons is oxidative DNA damage, which is repaired by the base excision repair (BER) pathway. Functional mutations of enzymes that are involved in the processing of single-strand breaks (SSB) that are generated during BER have been causally associated with syndromes that present important neurological alterations and cognitive decline. In this review, the plasticity of BER during neurogenesis and the importance of an efficient BER for correct brain function will be specifically addressed paying particular attention to the brain region and neuron-selectivity in SSB repair-associated neurological syndromes and age-related neurodegenerative diseases.


Oncotarget | 2017

Crosstalk between mismatch repair and base excision repair in human gastric cancer

Valeria Simonelli; Giuseppe Leuzzi; Giorgia Basile; Mariarosaria D'Errico; Paola Fortini; Annapaola Franchitto; Valentina Viti; Ashley R. Brown; Eleonora Parlanti; Barbara Pascucci; Domenico Palli; Fabio Palombo; Robert W. Sobol; Eugenia Dogliotti

DNA repair gene expression in a set of gastric cancers suggested an inverse association between the expression of the mismatch repair (MMR) gene MLH1 and that of the base excision repair (BER) gene DNA polymerase β (Polβ). To gain insight into possible crosstalk of these two repair pathways in cancer, we analysed human gastric adenocarcinoma AGS cells over-expressing Polβ or Polβ active site mutants, alone or in combination with MLH1 silencing. Next, we investigated the cellular response to the alkylating agent methyl methanesulfonate (MMS) and the purine analogue 6-thioguanine (6-TG), agents that induce lesions that are substrates for BER and/or MMR. AGS cells over-expressing Polβ were resistant to 6-TG to a similar extent as when MLH1 was inactivated while inhibition of O6-methylguanine-DNA methyltransferase (MGMT) was required to detect resistance to MMS. Upon either treatment, the association with MLH1 down-regulation further amplified the resistant phenotype. Moreover, AGS cells mutated in Polβ were hypersensitive to both 6-TG and MMS killing and their sensitivity was partially rescued by MLH1 silencing. We provide evidence that the critical lethal lesions in this new pathway are double strand breaks that are exacerbated when Polβ is defective and relieved when MLH1 is silenced. In conclusion, we provide evidence of crosstalk between MLH1 and Polβ that modulates the response to alkylation damage. These studies suggest that the Polβ/MLH1 status should be taken into consideration when designing chemotherapeutic approaches for gastric cancer.


Free Radical Biology and Medicine | 2017

Single nucleotide polymorphisms in DNA glycosylases: From function to disease

Mariarosaria D’Errico; Eleonora Parlanti; Barbara Pascucci; Paola Fortini; Sara Baccarini; Valeria Simonelli; Eugenia Dogliotti

Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.

Collaboration


Dive into the Eleonora Parlanti's collaboration.

Top Co-Authors

Avatar

Eugenia Dogliotti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Barbara Pascucci

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Fortini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Valeria Simonelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mariarosaria D'Errico

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Angelo Calcagnile

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paolo Degan

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Andrea Zijno

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Marco Crescenzi

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge