Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elias A. Said is active.

Publication


Featured researches published by Elias A. Said.


Nature Medicine | 2006

Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction

Lydie Trautmann; Loury Janbazian; Nicolas Chomont; Elias A. Said; Sylvain Gimmig; Benoit Bessette; Mohamed Rachid Boulassel; Eric Delwart; Homero Sepulveda; Robert Balderas; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1–PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8+ T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8+ T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8+ T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8+ T cells. Notably, cytomegalovirus (CMV)-specific CD8+ T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8+ T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8+ T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8+ repertoire.


Journal of Experimental Medicine | 2008

Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses

Denis Gaucher; René Therrien; Nadia Kettaf; Bastian R. Angermann; Geneviève Boucher; Abdelali Filali-Mouhim; Janice M. Moser; Riyaz Mehta; Donald R. Drake; Erika Castro; Rama Akondy; Aline Rinfret; Bader Yassine-Diab; Elias A. Said; Younes Chouikh; Mark J. Cameron; Robert Clum; David J. Kelvin; Roland Somogyi; Robert S. Balderas; Peter Wilkinson; Giuseppe Pantaleo; Jim Tartaglia; Elias K. Haddad; Rafick Pierre Sekaly

Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.


Nature Medicine | 2010

Programmed death-1–induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection

Elias A. Said; Franck P. Dupuy; Lydie Trautmann; Yuwei Zhang; Yu Shi; Mohamed El-Far; Brenna J. Hill; Alessandra Noto; Petronela Ancuta; Yoav Peretz; Simone Fonseca; Julien van Grevenynghe; Mohamed Rachid Boulassel; Julie Bruneau; Naglaa H. Shoukry; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.


Journal of Immunology | 2010

Peripheral Blood CCR4+CCR6+ and CXCR3+CCR6+ CD4+ T Cells Are Highly Permissive to HIV-1 Infection

Annie Gosselin; Patricia Monteiro; Nicolas Chomont; Felipe Diaz-Griffero; Elias A. Said; Simone Fonseca; Vanessa Sue Wacleche; Mohamed El-Far; Mohamed Rachid Boulassel; Jean-Pierre Routy; Rafick Pierre Sekaly; Petronela Ancuta

There is limited knowledge on the identity of primary CD4+ T cell subsets selectively targeted by HIV-1 in vivo. In this study, we established a link between HIV permissiveness, phenotype/homing potential, and lineage commitment in primary CD4+ T cells. CCR4+CCR6+, CCR4+CCR6−, CXCR3+CCR6+, and CXCR3+CCR6− T cells expressed cytokines and transcription factors specific for Th17, Th2, Th1Th17, and Th1 lineages, respectively. CCR4+CCR6+ and CXCR3+CCR6+ T cells expressed the HIV coreceptors CCR5 and CXCR4 and were permissive to R5 and X4 HIV replication. CCR4+CCR6− T cells expressed CXCR4 but not CCR5 and were permissive to X4 HIV only. CXCR3+CCR6− T cells expressed CCR5 and CXCR4 but were relatively resistant to R5 and X4 HIV in vitro. Total CCR6+ T cells compared with CCR6− T cells harbored higher levels of integrated HIV DNA in treatment-naive HIV-infected subjects. The frequency of total CCR6+ T cells and those of CCR4+CCR6+ and CXCR3+CCR6+ T cells were diminished in chronically infected HIV-positive subjects, despite viral-suppressive therapy. A high-throughput analysis of cytokine profiles identified CXCR3+CCR6+ T cells as a major source of TNF-α and CCL20 and demonstrated a decreased TNF-α/IL-10 ratio in CXCR3+CCR6− T cells. Finally, CCR4+CCR6+ and CXCR3+CCR6+ T cells exhibited gut- and lymph node-homing potential. Thus, we identified CCR4+CCR6+ and CXCR3+CCR6+ T cells as highly permissive to HIV replication, with potential to infiltrate and recruit more CCR6+ T cells into anatomic sites of viral replication. It is necessary that new therapeutic strategies against HIV interfere with viral replication/persistence in discrete CCR6+ T cell subsets.


Nature Medicine | 2008

Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection

Julien van Grevenynghe; Francesco A. Procopio; Zhong He; Nicolas Chomont; Catherine Riou; Yuwei Zhang; Sylvain Gimmig; Geneviève Boucher; Peter Wilkinson; Yu Shi; Bader Yassine-Diab; Elias A. Said; Lydie Trautmann; Mohamed El Far; Robert S. Balderas; Mohamed Rachid Boulassel; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

The persistence of central memory CD4+ T cells (TCM cells) is a major correlate of immunological protection in HIV/AIDS, as the rate of TCM cell decline predicts HIV disease progression. In this study, we show that TCM cells and effector memory CD4+ T cells (TEM cells) from HIV+ elite controller (EC) subjects are less susceptible to Fas-mediated apoptosis and persist longer after multiple rounds of T cell receptor triggering when compared to TCM and TEM cells from aviremic successfully treated (ST) subjects or from HIV− donors. We show that persistence of TCM cells from EC subjects is a direct consequence of inactivation of the FOXO3a pathway. Silencing the transcriptionally active form of FOXO3a by small interfering RNA or by introducing a FOXO3a dominant-negative form (FOXO3a Nt) extended the long-term survival of TCM cells from ST subjects to a length of time similar to that of TCM cells from EC subjects. The crucial role of FOXO3a in the survival of memory cells will help shed light on the underlying immunological mechanisms that control viral replication in EC subjects.


Journal of Immunology | 2011

Memory CCR6+CD4+ T Cells Are Preferential Targets for Productive HIV Type 1 Infection Regardless of Their Expression of Integrin β7

Patricia Monteiro; Annie Gosselin; Vanessa Sue Wacleche; Mohamed El-Far; Elias A. Said; Hassen Kared; Nathalie Grandvaux; Mohamed Rachid Boulassel; Jean Pierre Routy; Petronela Ancuta

HIV type 1 infection is associated with a rapid depletion of Th17 cells from the GALT. The chemokine receptor CCR6 is a marker for Th17 lineage polarization and HIV permissiveness in memory CD4+ T cells. CCR6+ T cells have the potential to migrate into the GALT via the gut-homing integrin α4β7, a newly identified HIV-gp120 binding receptor. In this study, we investigated whether memory T cells coexpressing CCR6 and integrin β7 are selective HIV targets and whether retinoic acid (RA)-induced imprinting for gut-homing selectively increases CCR6+ T cell permissiveness to infection. We demonstrated that β7−R6+ and β7+R6+ compared with β7−R6− and β7+R6− T cells were highly permissive to HIV, produced Th17 cytokines, and their frequency was decreased in the peripheral blood of HIV-infected subjects. RA upregulated integrin α4 and β7 coexpression in both CCR6+ and CCR6− T cells, but increased HIV permissiveness selectively in CCR6+ T cells via entry (CCR5 upregulation) and postentry mechanisms. In conclusion, these results demonstrate that CCR6, but not the integrin β7, is a discriminative marker for memory T cells imprinted with a transcriptional program favorable to HIV replication. Nevertheless, given the ability of integrin β7 to regulate cell migration into the GALT and bind HIV-gp120, CCR6+ T cells coexpressing integrin β7 and CCR5 might have an extraordinary ability to disseminate HIV from the portal sites of entry. Understanding the molecular mechanisms of memory CCR6+ T cell differentiation is critical for the design of new therapeutic strategies that should interfere with viral permissiveness but not Th17 lineage commitment and gut-homing potential in CCR6+ T cells.


Journal of Clinical Investigation | 2011

Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis

Julien van Grevenynghe; Rafael Cubas; Alessandra Noto; Sandrina DaFonseca; Zhong He; Yoav Peretz; Abdelali Filali-Mouhim; Franck P. Dupuy; Francesco A. Procopio; Nicolas Chomont; Robert S. Balderas; Elias A. Said; Mohamed Rachid Boulassel; Cécile Tremblay; Jean-Pierre Routy; Rafick Pierre Sekaly; Elias K. Haddad

Loss of memory B cells occurs from the onset of HIV-1 infection and persists into the chronic stages of infection. Lack of survival of these cells, even in subjects being treated, could primarily be the consequence of an altered local microenvironment induced by HIV infection. In this study we showed that memory B cell survival was significantly decreased in aviremic successfully treated (ST) subjects compared with subjects who control viral load as a result of natural immunity (elite controller [EC]) or with uninfected control (HIV-) subjects. The lower survival levels observed in memory B cells from ST subjects were the result of disrupted IL-2 signaling that led to increased transcriptional activity of Foxo3a and increased expression of its proapoptotic target TRAIL. Notably, memory B cell survival in ST subjects was significantly enhanced by the addition of exogenous IL-2 in a Foxo3a-dependent manner. We further showed that Foxo3a silencing by siRNA resulted in decreased expression of TRAIL and apoptosis levels in memory B cells from ST subjects. Our results thus establish a direct role for Foxo3a/TRAIL signaling in the persistence of memory B cells and provide a mechanism for the reduced survival of memory B cells during HIV infection. This knowledge could be exploited for the development of therapeutic and preventative HIV vaccines.


Journal of Immunotherapy | 2009

Semiquantitation of Mouse Dendritic Cell Migration In Vivo Using Cellular MRI

Gregory A. Dekaban; Jonatan Snir; Bradly Shrum; Sonali N. de Chickera; Christy Willert; Mia Merrill; Elias A. Said; Rafick-Pierre Sekaly; Paula J. Foster; Peta J. OʼConnell

Despite recent therapeutic advances, including the introduction of novel cytostatic drugs and therapeutic antibodies, many cancer patients will experience recurrent or metastatic disease. Current treatment options, particularly for those patients with metastatic breast, prostate, or skin cancers, are complex and have limited curative potential. Recent clinical trials, however, have shown that cell-based therapeutic vaccines may be used to generate broad-based, antitumor immune responses. Dendritic cells (DC) have proved to be the most efficacious cellular component for therapeutic vaccines, serving as both the adjuvant and antigen delivery vehicle. At present it is not possible to noninvasively determine the fate of DC-based vaccines after their administration to human subjects. In this study, we demonstrate that in vitro-generated mouse DC can be readily labeled with superparamagnetic iron oxide nanoparticles, Feridex, without altering cell morphology, or their phenotypic and functional maturation. Feridex-labeling enables the detection of DC in vivo after their migration to draining lymph nodes using a 1.5 T clinical magnetic resonance scanner. In addition, we report a semiquantitative approach for analysis of magnetic resonance images and show that the Feridex-induced signal void volume, and fractional signal loss, correlates with the delivery and migration of small numbers of in vitro-generated DC. These findings, together with ongoing preclinical studies, are key to gaining information critical for improving the efficacy of therapeutic vaccines for the treatment cancer, and potentially, chronic infectious diseases.


Seminars in Immunology | 2008

Lymph node architecture collapse and consequent modulation of FOXO3a pathway on memory T- and B-cells during HIV infection

Julien van Grevenynghe; Rabih Halwani; Nicolas Chomont; Petronela Ancuta; Yoav Peretz; Andre Tanel; Francesco A. Procopio; Yu Shi; Elias A. Said; Elias K. Haddad; Rafick Pierre Sekaly

Lymph nodes (LNs) represent the principal site where antigen-specific memory T- and B-cell responses are primed and differentiated into memory and effector cells. During chronic viral infections such as HIV, these lymphoid tissues undergo substantial structural changes. These changes are mostly caused by an imbalanced cytokine milieu, hyper-immune activation and collagen deposition leading to fibrotic LNs. The structural integrity of the LNs is essential to prime and maintain memory responses. Because cellular signalling events both up- and down-stream of FOXO3a are critical to the generation and the maintenance of lymphocyte memory, this review will focus on the interplay between the deregulation of the immune system caused by the virus and its impact on FOXO3a.


Springer Seminars in Immunopathology | 2006

Generation and maintenance of human memory cells during viral infection

Rabih Halwani; Mehrnoosh Doroudchi; Bader Yassine-Diab; Loury Janbazian; Yu Shi; Elias A. Said; Elias K. Haddad; Rafick Pierre Sekaly

Long-term maintenance of memory T cell response is the hallmark of immune protection and hence the holy grail of most vaccine development studies. Persistent memory cells, developed after either viral infection or vaccination, ensure the generation of an antiviral response upon reexposure to the pathogen. During acute viral infections, as in the case of measles and influenza viruses, strong T cell effector functions, which eradicate the virus and protect patients against reexposure, are achieved by the generation of persistent protective memory cells. However, in chronic infections, T cells drastically lose effector functions before acquiring a memory phenotype. Chronic infections can be categorized into infections where viremia is controlled and protective memory cells are maintained as in the case of EBV and CMV infections, or where the virus persists and memory cells are exhausted and disrupted as in the case of human immunodeficiency virus infection. In this review, we will discuss the different phenotypical and functional characteristics of memory cells subsets, the importance of the role they play during acute and chronic infections, and the mechanisms behind their effectiveness and persistence.

Collaboration


Dive into the Elias A. Said's collaboration.

Top Co-Authors

Avatar

Rafick Pierre Sekaly

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Pierre Routy

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed El-Far

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge