Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elias K. Haddad is active.

Publication


Featured researches published by Elias K. Haddad.


Nature Medicine | 2006

Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction

Lydie Trautmann; Loury Janbazian; Nicolas Chomont; Elias A. Said; Sylvain Gimmig; Benoit Bessette; Mohamed Rachid Boulassel; Eric Delwart; Homero Sepulveda; Robert Balderas; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1–PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8+ T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8+ T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8+ T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8+ T cells. Notably, cytomegalovirus (CMV)-specific CD8+ T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8+ T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8+ T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8+ repertoire.


Nature Medicine | 2009

HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation

Nicolas Chomont; Mohamed El-Far; Petronela Ancuta; Lydie Trautmann; Francesco A. Procopio; Bader Yassine-Diab; Geneviève Boucher; Mohamed Rachid Boulassel; Georges Ghattas; Jason M. Brenchley; Timothy W. Schacker; Brenna J. Hill; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

HIV persists in a reservoir of latently infected CD4+ T cells in individuals treated with highly active antiretroviral therapy (HAART). Here we identify central memory (TCM) and transitional memory (TTM) CD4+ T cells as the major cellular reservoirs for HIV and find that viral persistence is ensured by two different mechanisms. HIV primarily persists in TCM cells in subjects showing reconstitution of the CD4+ compartment upon HAART. This reservoir is maintained through T cell survival and low-level antigen-driven proliferation and is slowly depleted with time. In contrast, proviral DNA is preferentially detected in TTM cells from aviremic individuals with low CD4+ counts and higher amounts of interleukin-7–mediated homeostatic proliferation, a mechanism that ensures the persistence of these cells. Our results suggest that viral eradication might be achieved through the combined use of strategic interventions targeting viral replication and, as in cancer, drugs that interfere with the self renewal and persistence of proliferating memory T cells.


Journal of Experimental Medicine | 2008

Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses

Denis Gaucher; René Therrien; Nadia Kettaf; Bastian R. Angermann; Geneviève Boucher; Abdelali Filali-Mouhim; Janice M. Moser; Riyaz Mehta; Donald R. Drake; Erika Castro; Rama Akondy; Aline Rinfret; Bader Yassine-Diab; Elias A. Said; Younes Chouikh; Mark J. Cameron; Robert Clum; David J. Kelvin; Roland Somogyi; Robert S. Balderas; Peter Wilkinson; Giuseppe Pantaleo; Jim Tartaglia; Elias K. Haddad; Rafick Pierre Sekaly

Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.


Nature Medicine | 2010

Programmed death-1–induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection

Elias A. Said; Franck P. Dupuy; Lydie Trautmann; Yuwei Zhang; Yu Shi; Mohamed El-Far; Brenna J. Hill; Alessandra Noto; Petronela Ancuta; Yoav Peretz; Simone Fonseca; Julien van Grevenynghe; Mohamed Rachid Boulassel; Julie Bruneau; Naglaa H. Shoukry; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.


Nature Medicine | 2008

Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection

Julien van Grevenynghe; Francesco A. Procopio; Zhong He; Nicolas Chomont; Catherine Riou; Yuwei Zhang; Sylvain Gimmig; Geneviève Boucher; Peter Wilkinson; Yu Shi; Bader Yassine-Diab; Elias A. Said; Lydie Trautmann; Mohamed El Far; Robert S. Balderas; Mohamed Rachid Boulassel; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

The persistence of central memory CD4+ T cells (TCM cells) is a major correlate of immunological protection in HIV/AIDS, as the rate of TCM cell decline predicts HIV disease progression. In this study, we show that TCM cells and effector memory CD4+ T cells (TEM cells) from HIV+ elite controller (EC) subjects are less susceptible to Fas-mediated apoptosis and persist longer after multiple rounds of T cell receptor triggering when compared to TCM and TEM cells from aviremic successfully treated (ST) subjects or from HIV− donors. We show that persistence of TCM cells from EC subjects is a direct consequence of inactivation of the FOXO3a pathway. Silencing the transcriptionally active form of FOXO3a by small interfering RNA or by introducing a FOXO3a dominant-negative form (FOXO3a Nt) extended the long-term survival of TCM cells from ST subjects to a length of time similar to that of TCM cells from EC subjects. The crucial role of FOXO3a in the survival of memory cells will help shed light on the underlying immunological mechanisms that control viral replication in EC subjects.


Journal of Clinical Investigation | 2011

Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis

Julien van Grevenynghe; Rafael Cubas; Alessandra Noto; Sandrina DaFonseca; Zhong He; Yoav Peretz; Abdelali Filali-Mouhim; Franck P. Dupuy; Francesco A. Procopio; Nicolas Chomont; Robert S. Balderas; Elias A. Said; Mohamed Rachid Boulassel; Cécile Tremblay; Jean-Pierre Routy; Rafick Pierre Sekaly; Elias K. Haddad

Loss of memory B cells occurs from the onset of HIV-1 infection and persists into the chronic stages of infection. Lack of survival of these cells, even in subjects being treated, could primarily be the consequence of an altered local microenvironment induced by HIV infection. In this study we showed that memory B cell survival was significantly decreased in aviremic successfully treated (ST) subjects compared with subjects who control viral load as a result of natural immunity (elite controller [EC]) or with uninfected control (HIV-) subjects. The lower survival levels observed in memory B cells from ST subjects were the result of disrupted IL-2 signaling that led to increased transcriptional activity of Foxo3a and increased expression of its proapoptotic target TRAIL. Notably, memory B cell survival in ST subjects was significantly enhanced by the addition of exogenous IL-2 in a Foxo3a-dependent manner. We further showed that Foxo3a silencing by siRNA resulted in decreased expression of TRAIL and apoptosis levels in memory B cells from ST subjects. Our results thus establish a direct role for Foxo3a/TRAIL signaling in the persistence of memory B cells and provide a mechanism for the reduced survival of memory B cells during HIV infection. This knowledge could be exploited for the development of therapeutic and preventative HIV vaccines.


Journal of Immunology | 2004

Caspase-3 Is a Component of Fas Death-Inducing Signaling Complex in Lipid Rafts and Its Activity Is Required for Complete Caspase-8 Activation during Fas-Mediated Cell Death

Salah M. Aouad; Luchino Y. Cohen; Ehsan Sharif-Askari; Elias K. Haddad; Antoine Alam; Rafick-Pierre Sekaly

Since its discovery, caspase-8 has been placed at the apex of the proteolytic cascade triggered by death receptor (DR) cross-linking. Because of its capacity to interact with the cytoplasmic portion of DR, it has been suggested that caspase-8 acts independently of other caspases in the initiation of Fas and other DR signaling. In this study, we demonstrate that in Jurkat cells, caspase-3 cleavage is an early step during Fas-induced apoptosis. We show that caspase-3 processing into its p20 occurs rapidly after Fas cross-linking, in the absence of mitochondrial depolarization and caspase-9 activation. Moreover, caspase-3 is present in lipid rafts of untreated Jurkat cells and peripheral T lymphocytes. Caspase-3, caspase-8, and Fas-associated death domain are further recruited to lipid rafts of Jurkat cells following anti-Fas treatment. Fas immunoprecipitation reveals that caspase-3 is a component of the death-inducing signaling complex, suggesting that this cysteine protease is in close proximity to caspase-8. Furthermore, transduction of Jurkat cells with a caspase-3 dominant-negative form inhibits caspase-8 processing and results in inhibition of apoptosis, suggesting that caspase-3 activity is required for caspase-8 activation. Overall, these findings support a model whereby caspase-3 is a component of the death-inducing signaling complex located in lipid rafts, and as such, is involved in the amplification of caspase-8 activity by the mitochondrion.


American Journal of Reproductive Immunology | 1997

Decidual Infiltration and Activation of Macrophages Leads to Early Embryo Loss

Malcolm G. Baines; Alain J. Duclos; Emilia Antecka; Elias K. Haddad

PROBLEM: There is considerable controversy concerning the root cause and mechanisms of early embryo loss. It has been suggested that most pregnancy losses occur due to morphogenetic anomalies of the embryo. It has also been suggested that the maternal specific immune system rejects the embryo.


American Journal of Reproductive Immunology | 1995

Presence of Activated Macrophages in a Murine Model of Early Embryo Loss

Alain J. Duclos; Elias K. Haddad; Malcolm G. Baines

PROBLEM: Even though our knowledge of the phenomenon at play at the fetoplacental interface has greatly advanced during the past years, a complete understanding of the reasons why the developing embryo is not rejected by maternal immune effector cells remains largely unknown.


Blood | 2012

Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection

Lydie Trautmann; Florentin Martial Mbitikon-Kobo; Jean Philippe Goulet; Yoav Peretz; Yu Shi; Julien van Grevenynghe; Francesco A. Procopio; Mohamad Rachid Boulassel; Jean-Pierre Routy; Nicolas Chomont; Elias K. Haddad; Rafick Pierre Sekaly

Immediate-early host-virus interactions that occur during the first weeks after HIV infection have a major impact on disease progression. The mechanisms underlying the failure of HIV-specific CD8 T-cell response to persist and control viral replication early in infection are yet to be characterized. In this study, we performed a thorough phenotypic, gene expression and functional analysis to compare HIV-specific CD8 T cells in acutely and chronically infected subjects. We showed that HIV-specific CD8 T cells in primary infection can be distinguished by their metabolic state, rate of proliferation, and susceptibility to apoptosis. HIV-specific CD8 T cells in acute/early HIV infection secreted less IFN-γ but were more cytotoxic than their counterparts in chronic infection. Importantly, we showed that the levels of IL-7R expression and the capacity of HIV-specific CD8 T cells to secrete IL-2 on antigenic restimulation during primary infection were inversely correlated with the viral set-point. Altogether, these data suggest an altered metabolic state of HIV-specific CD8 T cells in primary infection resulting from hyperproliferation and stress induced signals, demonstrate the discordant function of HIV-specific CD8 T cells during early/acute infection, and highlight the importance of T-cell maintenance for viral control.

Collaboration


Dive into the Elias K. Haddad's collaboration.

Top Co-Authors

Avatar

Rafick Pierre Sekaly

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Elias A. Said

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Routy

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge