Elias Broman
Linnaeus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elias Broman.
Proceedings of the Royal Society B: Biological Sciences | 2015
Elias Broman; Martin Brüsin; Mark Dopson; Samuel Hylander
Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic–pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 105 nauplii m−2 emerged from sediment turned oxic compared with 0.02 × 105 m−2 from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic–pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.
Mbio | 2017
Elias Broman; Johanna Sjöstedt; Jarone Pinhassi; Mark Dopson
BackgroundA key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as ‘dead zones’. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface.ResultsCompared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation.ConclusionsThese novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses upon oxygenation of dead zones. Moreover, these results highlight that microbial responses, and therefore ultimately remediation efforts, depend largely on the oxygenation history of sites. Furthermore, it was shown that re-oxygenation efforts to remediate dead zones could ultimately be facilitated by in situ microbial molecular mechanisms involved in removal of toxic H2S and the potent greenhouse gas methane.
FEMS Microbiology Ecology | 2018
Margarita Lopez-Fernandez; Elias Broman; Stephanie Turner; Xiaofen Wu; Stefan Bertilsson; Mark Dopson
ABSTRACT The deep biosphere is the largest ‘bioreactor’ on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Proceedings of the Royal Society B: Biological Sciences | 2017
Elias Broman; Varvara Sachpazidou; Mark Dopson; Samuel Hylander
An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as ‘dead zones’) mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal ‘dead zone’ Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic ‘signatures’. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on ‘standby’ to exploit the environment if they reach suitable habitats.
Frontiers in Microbiology | 2017
Elias Broman; Varvara Sachpazidou; Jarone Pinhassi; Mark Dopson
The Baltic Sea has undergone severe eutrophication during the last century, resulting in increased algal blooms and the development of hypoxic bottom waters. In this study, we sampled oxygen deficient sediment cores from a Baltic Sea coastal bay and exposed the bottom water including the sediment surface to oxygen shifts via artificial addition of air during laboratory incubation. Surface sediment (top 1 cm) from the replicate cores were sliced in the field as well as throughout the laboratory incubations and chemical parameters were analyzed along with high throughput sequencing of community DNA and RNA. After oxygenation, dissolved iron decreased in the water overlying the sediment while inorganic sulfur compounds (thiosulfate and tetrathionate) increased when the water was kept anoxic. Oxygenation of the sediment also maintained RNA transcripts attributed to sulfide and sulfur oxidation as well as nitrogen fixation in the sediment surface. Based on 16S rRNA gene and metatranscriptomic analyses it was found that oxygenation of the sediment surface caused a bloom of the Epsilonproteobacteria genus Arcobacter. In addition, the formation of a thick white film was observed that was likely filamentous zero-valent sulfur produced by the Arcobacter spp. Based on these results, sulfur cycling and nitrogen fixation that were evident in the field samples were ongoing during re-oxygenation of the sediment. These processes potentially added organic nitrogen to the system and facilitated the re-establishment of micro- and macroorganism communities in the benthic zone.
Frontiers in Microbiology | 2018
Gaofeng Ni; Sebastian Canizales; Elias Broman; Domenico Simone; Viraja R. Palwai; Daniel Lundin; Margarita Lopez-Fernandez; Tom H. J. A. Sleutels; Mark Dopson
Thiocyanate is a toxic compound produced by the mining and metallurgy industries that needs to be remediated prior to its release into the environment. If the industry is situated at high altitudes or near the poles, economic factors require a low temperature treatment process. Microbial fuel cells are a developing technology that have the benefits of both removing such toxic compounds while recovering electrical energy. In this study, simultaneous thiocyanate degradation and electrical current generation was demonstrated and it was suggested that extracellular electron transfer to the anode occurred. Investigation of the microbial community by 16S rRNA metatranscriptome reads supported that the anode attached and planktonic anolyte consortia were dominated by a Thiobacillus-like population. Metatranscriptomic sequencing also suggested thiocyanate degradation primarily occurred via the ‘cyanate’ degradation pathway. The generated sulfide was metabolized via sulfite and ultimately to sulfate mediated by reverse dissimilatory sulfite reductase, APS reductase, and sulfate adenylyltransferase and the released electrons were potentially transferred to the anode via soluble electron shuttles. Finally, the ammonium from thiocyanate degradation was assimilated to glutamate as nitrogen source and carbon dioxide was fixed as carbon source. This study is one of the first to demonstrate a low temperature inorganic sulfur utilizing microbial fuel cell and the first to provide evidence for pathways of thiocyanate degradation coupled to electron transfer.
Limnology and Oceanography | 2016
Birgit Koehler; Elias Broman; Lars J. Tranvik
Biodegradation | 2017
Elias Broman; Abbtesaim Jawad; Xiaofen Wu; Stephan Christel; Gaofeng Ni; Margarita Lopez-Fernandez; Jan-Eric Sundkvist; Mark Dopson
Archive | 2018
Elias Broman
Archive | 2018
Elias Broman; Lingni Li; Jimmy Fridlund; Fredrik Svensson; Catherine Legrand; Mark Dopson