Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elias Saion is active.

Publication


Featured researches published by Elias Saion.


International Journal of Molecular Sciences | 2012

Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

Nayereh Soltani; Elias Saion; Mohd Zobir Hussein; Maryam Erfani; Alam Abedini; Ghazaleh Bahmanrokh; Manizheh Navasery; Parisa Vaziri

ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.


Journal of Nanomaterials | 2010

Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method

Mahmoud Goodarz Naseri; Elias Saion; Hossein Abbastabar Ahangar; Abdul Halim Shaari; Mansor Hashim

Crystalline, magnetic, cobalt ferrite nanoparticles were synthesized from an aqueous solution containing metal nitrates and polyvinyl pyrrolidone (PVP) as a capping agent by a thermal treatment followed by calcination at various temperatures from 673 to 923 K. The structural characteristics of the calcined samples were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). A completed crystallization occurred at 823 and 923 K, as shown by the absence of organic absorption bands in the FT-IR spectrum. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors.


Nanoscale Research Letters | 2013

A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

Alam Abedini; Abdul Razak Daud; Muhammad Azmi Abdul Hamid; Norinsan Kamil Othman; Elias Saion

This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose.


International Journal of Molecular Sciences | 2013

Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method.

Elias Saion; Elham Gharibshahi; Kazem Naghavi

Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology.


International Journal of Molecular Sciences | 2012

Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles

Elham Gharibshahi; Elias Saion

Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.


International Journal of Molecular Sciences | 2012

Influence of the Polyvinyl Pyrrolidone Concentration on Particle Size and Dispersion of ZnS Nanoparticles Synthesized by Microwave Irradiation

Nayereh Soltani; Elias Saion; Maryam Erfani; Khadijeh Rezaee; Ghazaleh Bahmanrokh; Gregor P. C. Drummen; Afarin Bahrami; Mohd Zobir Hussein

Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C–N and C=O with the nanoparticle’s surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%), sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size.


PLOS ONE | 2014

A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature

Naif Mohammed Al-Hada; Elias Saion; Abdul Halim Shaari; Mazliana Ahmad Kamarudin; Moayad Husein Flaifel; Sahrim Hj. Ahmad; Salahudeen A. Gene

A facile thermal-treatment route was successfully used to synthesize ZnO nanosheets. Morphological, structural, and optical properties of obtained nanoparticles at different calcination temperatures were studied using various techniques. The FTIR, XRD, EDX, SEM and TEM images confirmed the formation of ZnO nanosheets through calcination in the temperature between 500 to 650°C. The SEM images showed a morphological structure of ZnO nanosheets, which inclined to crumble at higher calcination temperatures. The XRD and FTIR spectra revealed that the samples were amorphous at 30°C but transformed into a crystalline structure during calcination process. The average particle size and degree of crystallinity increased with increasing calcination temperature. The estimated average particle sizes from TEM images were about 23 and 38 nm for the lowest and highest calcination temperature i.e. 500 and 650°C, respectively. The optical properties were determined by UV–Vis reflection spectrophotometer and showed a decrease in the band gap with increasing calcination temperature.


Journal of Nanomaterials | 2012

Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte

Noorhanim Ahad; Elias Saion; Elham Gharibshahi

Structural, thermal, and electrical properties of solid composite polymer electrolytes based on poly (vinyl alcohol) complexed with sodium salicylate were studied. The polymer electrolytes at different weight percent ratios were prepared by solution casting technique. The changes in the structures of the electrolytes were characterized by XRD, which revealed the amorphous domains of the polymer which increased with increase of sodium salicylate concentration. The complexion of the polymer electrolytes were confirmed by FTIR studies. Thermal gravimetric analysis (TGA) was used to study the thermal stability of the polymer below 523 K. The decomposition decreases with increasing sodium salicylate concentration. The conductivity and dielectric properties were measured using an impedance analyzer in frequency range of 20Hz to 1MHz and narrow temperature range of 303 to 343 K. The conductivity increased with increase of sodium salicylate concentration and temperature. The dielectric constant and dielectric loss increased with the increase in temperature and decreased with the increase in sodium salicylate concentration.


Brazilian Journal of Physics | 2010

Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution

Esmaeil Shahriari; W. Mahmood Mat Yunus; Elias Saion

Nonlinear refractive index of Au nanoparticle suspended in PVA solution was measured using a single beam Z-scan technique. Measurements were carried out using a green CW laser beam operated at 532 nm as excitation source. Five nanoparticle samples with different particle sizes were prepa red by γ radiation method. The Au nano-fluid shows a good third order nonlinear response for particle sizes ranging from 7.0 nm to 18.7 nm. The sign of the nonlinear refractive index was found to be negative and the magnitude was in the order of 10-8 cm2/W. The results show that the nonlinear effect tends to be increased linearly with the increasing of particle sizes thus could be a good candidate for nonlinear optical devices.


International Scholarly Research Notices | 2012

An Overview on Nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 Synthesized by a Thermal Treatment Method

Mahmoud Goodarz Naseri; Elias Saion; Ahmad Kamali

This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn, and Co) nanoparticles by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidone) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes were obtained by TEM images, which were in good agreement with the XRD results. Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited superparamagnetic and ferromagnetic behaviors.

Collaboration


Dive into the Elias Saion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nayereh Soltani

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farhad Larki

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mansor Hashim

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge