Nayereh Soltani
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nayereh Soltani.
International Journal of Molecular Sciences | 2012
Nayereh Soltani; Elias Saion; Mohd Zobir Hussein; Maryam Erfani; Alam Abedini; Ghazaleh Bahmanrokh; Manizheh Navasery; Parisa Vaziri
ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.
International Journal of Molecular Sciences | 2012
Nayereh Soltani; Elias Saion; Maryam Erfani; Khadijeh Rezaee; Ghazaleh Bahmanrokh; Gregor P. C. Drummen; Afarin Bahrami; Mohd Zobir Hussein
Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C–N and C=O with the nanoparticle’s surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%), sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size.
Chinese Physics Letters | 2013
Alireza Kharazmi; Elias Saion; Nastaran Faraji; Nayereh Soltani; Arash Dehzangi
Monodispersed spherical CdS nanoparticles embedded into polyvinyl alcohol (PVA) films are synthesized by using an in-situ gamma-irradiation-induced method. The formation mechanism of CdS nanoparticles capped by two united cells of PVA is purposed by means of surrounding the CdS nanoparticles with OH bonds of the PVA chain. CdS nanoparticles are found to possess an unusual orthorhombic structure in monoclinic crystalline PVA. The polymer matrix affords protection from agglomeration and controls the particle size. It is found that the distribution of the prepared nanoparticles increases and a narrower size distribution is observed when the gamma radiation is varied from 10 to 50 kGy. While the average size of the nanoparticles is found to be less affected by the variation of the gamma radiation doses. The size range of the synthesized nanoparticles is 14±1 nm. The optical absorption spectra of synthesized CdS nanoparticles in a polymer matrix reveal the blue shift in the band gap energy with respect to CdS bulk materials owing to quantum confinement effect. The photoluminescence study of nanocomposite films shows the green emission arising from the crystalline defects.
Journal of Inorganic and Organometallic Polymers and Materials | 2012
Nayereh Soltani; Elias Saion; Mohd Zobir Hussein; Maryam Erfani; Khadijeh Rezaee; Ghazaleh Bahmanrokh
Cadmium sulfide (CdS) nanocrystals were synthesized in aqueous solution of polyvinyl pyrrolidone (PVP) via the simple and rapid microwave irradiation method. It is revealed that sulfur source is a key factor in controlling the phase formation of the resulting nanocrystals. The hexagonal and cubic structure of CdS nanocrystals could be obtained with varying sulfur sources of thioacetamide and sodium sulphide respectively. The interaction mechanism of PVP with precursor ions of cadmium and sulfur sources in the preparation process was proposed. It is found that PVP compounded the CdS nanoparticles and protected them from agglomerating. With increasing of PVP concentration, the average particle size of CdS nanocrystals increased and subsequently their optical band gap decreased. At the appropriate dosage of PVP, well isolated nanoparticles with relatively narrow size distribution were obtained for both sulfur sources. Moreover the stability of CdS nanoparticles enhanced after coating with polymer.
International Journal of Molecular Sciences | 2012
Alam Abedini; Elias Saion; Farhad Larki; Azmi Zakaria; Monir Noroozi; Nayereh Soltani
Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.
International Journal of Molecular Sciences | 2012
Maryam Erfani; Elias Saion; Nayereh Soltani; Mansor Hashim; Wan Saffiey Wan Abdullah; Manizheh Navasery
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.
Journal of Nanomaterials | 2016
Aysar Sabah Keiteb; Elias Saion; Azmi Zakaria; Nayereh Soltani
Zirconium dioxide nanoparticles with monoclinic blended structure were successfully synthesized by thermal treatment method using zirconium (IV) acetate hydroxide as the metal precursor, polyvinylpyrrolidone as the capping agent, and deionized water as a solvent. The chemicals were mixed and stirred to form a homogeneous solution and hereafter directly underwent calcination to attain the pure nanocrystalline powder, which was confirmed by FTIR, EDX, and XRD analyses. The control over the size and optical properties of nanoparticles was achieved through changing in calcination temperatures from 600 to 900&#-80;C. The obtained average particle sizes from XRD spectra and TEM images showed that the particle size increased with increasing calcination temperature. The optical properties which were investigated using a UV-Vis spectrophotometer showed a decrease in the band gap energy with increasing calcination temperature due to the enlargement of the particle size. These results prove that, by eliminating drying process (24źh) in the present thermal treatment method, size-controlled zirconia nanoparticles were conveniently manufactured with a reduction of synthesize time and energy consumption, suitable for large-scale fabrication.
Advanced Materials Research | 2013
Nayereh Soltani; Elias Saion; Mohd Zobir Hussein; Robiah Yunus; Manizheh Navaseri
Synthesis of cadmium sulfide (CdS) nanoparticles has been performed through the simple and rapid microwave-assisted polyol method, using cadmium chloride and thioacetamide as the cadmium and sulfur sources respectively. Attempts were made to control the size and crystallinity of the CdS nanoparticles by controlling microwave irradiation time and the initial molar ratio of the cadmium and sulfur sources. The structure of nanoparticles characterized by X-ray diffraction (XRD) was hexagonal. No peaks corresponding to impurities were detected, indicating the high purity of the product. The size of the prepared samples was calculated by Debye–Scherrer formula according to XRD spectra. The morphology of particles was observed in the transmission electron microscopy (TEM) images was spherical. The average size of nanoparticles was also estimated from these images. The optical absorption of CdS nanoparticles studied by UV-Visible spectroscopy showed a blue shift from bulk CdS due to quantum confinement. The size of nanoparticles was calculated by Brus formula according to UV-Visible spectrum and compared to XRD and TEM results.
Advanced Materials Research | 2011
Afarin Bahrami; Z.A. Talib; W. Mahmood Mat Yunus; Kasra Behzad; Nayereh Soltani
This study describes the preparation of polypyrrole multiwall carbon nanotube (PPy/MWNT) composites by in situ chemical oxidative polymerization. Various ratios of functionalized MWNTs are dispersed in the water, and PPy are then synthesized via in-situ chemical oxidative polymerization on the surface of the carbon nanotubes. The morphology of the resulting complex nanotubes (MWNT-PPY) was characterized by field-emission scanning electron microscopy (FESEM). The conductivity of each composite showed a maximum in the temperature scale of 120 – 160 °C and then decreased dramatically with the increase of temperature. The resultant PPy/MWNT nanotubes enhanced electrical conductivity and thermal stability of nanocomposite compared to PPy which was strongly influenced by the feed ratio of pyrrole to MWNTs.
Advanced Materials Research | 2013
Maryam Erfani Haghiri; Elias Saion; Nayereh Soltani; Wan Saffiey Wan Abdullah
The crystalline calcium tetraborate (CaB4O7) nanoparticles were synthesized using a combination of facile co-precipitation and thermal treatment. The synthesized phosphor nanoparticles were found to possess a monoclinic nanostructure of particle size of about 8 nm. The thermoluminescence (TL) glow curve of the nanoparticles shows a single peak centred at about 150°C. The TL nanophosphor revealed an excellent dosimetric response with a respectable linearity in the dose range of 0.05 to 1000 Gy, which is wider than its counterparts prepared by non nanosynthesis methods. They exhibited good luminescence efficiency and wide range linearity, suggesting the present phosphor nanoparticles may be considered as a suitable candidate for the dosimetric applications.