Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elie A. Akl is active.

Publication


Featured researches published by Elie A. Akl.


Chest | 2012

Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.

Clive Kearon; Elie A. Akl; Anthony J. Comerota; Paolo Prandoni; Henri Bounameaux; Samuel Z. Goldhaber; Michael E. Nelson; Philip S. Wells; Michael K. Gould; Francesco Dentali; Mark Crowther; Susan R. Kahn

BACKGROUND This article addresses the treatment of VTE disease. METHODS We generated strong (Grade 1) and weak (Grade 2) recommendations based on high-quality (Grade A), moderate-quality (Grade B), and low-quality (Grade C) evidence. RESULTS For acute DVT or pulmonary embolism (PE), we recommend initial parenteral anticoagulant therapy (Grade 1B) or anticoagulation with rivaroxaban. We suggest low-molecular-weight heparin (LMWH) or fondaparinux over IV unfractionated heparin (Grade 2C) or subcutaneous unfractionated heparin (Grade 2B). We suggest thrombolytic therapy for PE with hypotension (Grade 2C). For proximal DVT or PE, we recommend treatment of 3 months over shorter periods (Grade 1B). For a first proximal DVT or PE that is provoked by surgery or by a nonsurgical transient risk factor, we recommend 3 months of therapy (Grade 1B; Grade 2B if provoked by a nonsurgical risk factor and low or moderate bleeding risk); that is unprovoked, we suggest extended therapy if bleeding risk is low or moderate (Grade 2B) and recommend 3 months of therapy if bleeding risk is high (Grade 1B); and that is associated with active cancer, we recommend extended therapy (Grade 1B; Grade 2B if high bleeding risk) and suggest LMWH over vitamin K antagonists (Grade 2B). We suggest vitamin K antagonists or LMWH over dabigatran or rivaroxaban (Grade 2B). We suggest compression stockings to prevent the postthrombotic syndrome (Grade 2B). For extensive superficial vein thrombosis, we suggest prophylactic-dose fondaparinux or LMWH over no anticoagulation (Grade 2B), and suggest fondaparinux over LMWH (Grade 2C). CONCLUSION Strong recommendations apply to most patients, whereas weak recommendations are sensitive to differences among patients, including their preferences.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables

Gordon H. Guyatt; Andrew D Oxman; Elie A. Akl; Regina Kunz; Gunn Elisabeth Vist; Jan Brozek; Susan L. Norris; Yngve Falck-Ytter; Paul Glasziou; Hans deBeer; Roman Jaeschke; David Rind; Joerg J. Meerpohl; Philipp Dahm; Holger J. Schünemann

This article is the first of a series providing guidance for use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system of rating quality of evidence and grading strength of recommendations in systematic reviews, health technology assessments (HTAs), and clinical practice guidelines addressing alternative management options. The GRADE process begins with asking an explicit question, including specification of all important outcomes. After the evidence is collected and summarized, GRADE provides explicit criteria for rating the quality of evidence that include study design, risk of bias, imprecision, inconsistency, indirectness, and magnitude of effect. Recommendations are characterized as strong or weak (alternative terms conditional or discretionary) according to the quality of the supporting evidence and the balance between desirable and undesirable consequences of the alternative management options. GRADE suggests summarizing evidence in succinct, transparent, and informative summary of findings tables that show the quality of evidence and the magnitude of relative and absolute effects for each important outcome and/or as evidence profiles that provide, in addition, detailed information about the reason for the quality of evidence rating. Subsequent articles in this series will address GRADEs approach to formulating questions, assessing quality of evidence, and developing recommendations.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 9. Rating up the quality of evidence.

Gordon H. Guyatt; Andrew D Oxman; Shahnaz Sultan; Paul Glasziou; Elie A. Akl; Pablo Alonso-Coello; David Atkins; Regina Kunz; Jan Brozek; Victor M. Montori; Roman Jaeschke; David Rind; Philipp Dahm; Joerg J. Meerpohl; Gunn Elisabeth Vist; Elise Berliner; Susan L. Norris; Yngve Falck-Ytter; M. Hassan Murad; Holger J. Schünemann

The most common reason for rating up the quality of evidence is a large effect. GRADE suggests considering rating up quality of evidence one level when methodologically rigorous observational studies show at least a two-fold reduction or increase in risk, and rating up two levels for at least a five-fold reduction or increase in risk. Systematic review authors and guideline developers may also consider rating up quality of evidence when a dose-response gradient is present, and when all plausible confounders or biases would decrease an apparent treatment effect, or would create a spurious effect when results suggest no effect. Other considerations include the rapidity of the response, the underlying trajectory of the condition, and indirect evidence.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias)

Gordon H. Guyatt; Andrew D Oxman; Gunn Elisabeth Vist; Regina Kunz; Jan Brozek; Pablo Alonso-Coello; Victor M. Montori; Elie A. Akl; Ben Djulbegovic; Yngve Falck-Ytter; Susan L. Norris; John W Williams; David Atkins; Joerg J. Meerpohl; Holger J. Schünemann

In the GRADE approach, randomized trials start as high-quality evidence and observational studies as low-quality evidence, but both can be rated down if most of the relevant evidence comes from studies that suffer from a high risk of bias. Well-established limitations of randomized trials include failure to conceal allocation, failure to blind, loss to follow-up, and failure to appropriately consider the intention-to-treat principle. More recently recognized limitations include stopping early for apparent benefit and selective reporting of outcomes according to the results. Key limitations of observational studies include use of inappropriate controls and failure to adequately adjust for prognostic imbalance. Risk of bias may vary across outcomes (e.g., loss to follow-up may be far less for all-cause mortality than for quality of life), a consideration that many systematic reviews ignore. In deciding whether to rate down for risk of bias--whether for randomized trials or observational studies--authors should not take an approach that averages across studies. Rather, for any individual outcome, when there are some studies with a high risk, and some with a low risk of bias, they should consider including only the studies with a lower risk of bias.


Chest | 2012

Executive Summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines

Gordon H. Guyatt; Elie A. Akl; Mark Crowther; David D. Gutterman; Holger J. Schuünemann

The eighth iteration of the American College of Chest Physicians Antithrombotic Guidelines presented, in a paper version, a narrative evidence summary and rationale for the recommendations, a small number of evidence profiles summarizing bodies of evidence, and some articles with quite extensive summary tables of primary studies. In total, this represented 600 recommendations summarized in 968 pages of text. Many readers responded that the result was too voluminous for their liking or practical use.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 7. Rating the quality of evidence--inconsistency

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; James Woodcock; Jan Brozek; Mark Helfand; Pablo Alonso-Coello; Paul Glasziou; Roman Jaeschke; Elie A. Akl; Susan L. Norris; Gunn Elisabeth Vist; Philipp Dahm; Vijay K. Shukla; Julian P. T. Higgins; Yngve Falck-Ytter; Holger J. Schünemann

This article deals with inconsistency of relative (rather than absolute) treatment effects in binary/dichotomous outcomes. A body of evidence is not rated up in quality if studies yield consistent results, but may be rated down in quality if inconsistent. Criteria for evaluating consistency include similarity of point estimates, extent of overlap of confidence intervals, and statistical criteria including tests of heterogeneity and I(2). To explore heterogeneity, systematic review authors should generate and test a small number of a priori hypotheses related to patients, interventions, outcomes, and methodology. When inconsistency is large and unexplained, rating down quality for inconsistency is appropriate, particularly if some studies suggest substantial benefit, and others no effect or harm (rather than only large vs. small effects). Apparent subgroup effects may be spurious. Credibility is increased if subgroup effects are based on a small number of a priori hypotheses with a specified direction; subgroup comparisons come from within rather than between studies; tests of interaction generate low P-values; and have a biological rationale.


Arthritis & Rheumatism | 2016

2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis.

Jasvinder A. Singh; Kenneth G. Saag; S. Louis Bridges; Elie A. Akl; Raveendhara R. Bannuru; Matthew C. Sullivan; Elizaveta Vaysbrot; Christine McNaughton; Mikala Osani; Robert H. Shmerling; Jeffrey R. Curtis; Daniel E. Furst; Deborah Parks; Arthur Kavanaugh; James R. O'Dell; Charles H. King; Amye Leong; Eric L. Matteson; John T. Schousboe; Barbara Drevlow; Seth Ginsberg; James Grober; E. William St. Clair; Elizabeth A. Tindall; Amy S. Miller; Timothy E. McAlindon

To develop a new evidence‐based, pharmacologic treatment guideline for rheumatoid arthritis (RA).


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 8. Rating the quality of evidence-Indirectness

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; James Woodcock; Jan Brozek; Mark Helfand; Pablo Alonso-Coello; Yngve Falck-Ytter; Roman Jaeschke; Gunn Elisabeth Vist; Elie A. Akl; Piet N. Post; Susan L. Norris; Joerg J. Meerpohl; Vijay K. Shukla; Mona Nasser; Holger J. Schünemann

Direct evidence comes from research that directly compares the interventions in which we are interested when applied to the populations in which we are interested and measures outcomes important to patients. Evidence can be indirect in one of four ways. First, patients may differ from those of interest (the term applicability is often used for this form of indirectness). Secondly, the intervention tested may differ from the intervention of interest. Decisions regarding indirectness of patients and interventions depend on an understanding of whether biological or social factors are sufficiently different that one might expect substantial differences in the magnitude of effect. Thirdly, outcomes may differ from those of primary interest-for instance, surrogate outcomes that are not themselves important, but measured in the presumption that changes in the surrogate reflect changes in an outcome important to patients. A fourth type of indirectness, conceptually different from the first three, occurs when clinicians must choose between interventions that have not been tested in head-to-head comparisons. Making comparisons between treatments under these circumstances requires specific statistical methods and will be rated down in quality one or two levels depending on the extent of differences between the patient populations, co-interventions, measurements of the outcome, and the methods of the trials of the candidate interventions.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 5. Rating the quality of evidence—publication bias

Gordon H. Guyatt; Andrew D Oxman; Victor M. Montori; Gunn Elisabeth Vist; Regina Kunz; Jan Brozek; Pablo Alonso-Coello; Ben Djulbegovic; David Atkins; Yngve Falck-Ytter; John W Williams; Joerg J. Meerpohl; Susan L. Norris; Elie A. Akl; Holger J. Schünemann

In the GRADE approach, randomized trials start as high-quality evidence and observational studies as low-quality evidence, but both can be rated down if a body of evidence is associated with a high risk of publication bias. Even when individual studies included in best-evidence summaries have a low risk of bias, publication bias can result in substantial overestimates of effect. Authors should suspect publication bias when available evidence comes from a number of small studies, most of which have been commercially funded. A number of approaches based on examination of the pattern of data are available to help assess publication bias. The most popular of these is the funnel plot; all, however, have substantial limitations. Publication bias is likely frequent, and caution in the face of early results, particularly with small sample size and number of events, is warranted.


International Journal of Epidemiology | 2010

The effects of waterpipe tobacco smoking on health outcomes: a systematic review

Elie A. Akl; Swarna Gaddam; Sameer K. Gunukula; Roland Honeine; Philippe Jaoude; Jihad Irani

BACKGROUND There is a need for a comprehensive and critical review of the literature to inform scientific debates about the public health effects of waterpipe smoking. The objective of this study was therefore to systematically review the medical literature for the effects of waterpipe tobacco smoking on health outcomes. METHODS We conducted a systematic review using the Cochrane Collaboration methodology for conducting systematic reviews. We rated the quality of evidence for each outcome using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. RESULTS Twenty-four studies were eligible for this review. Based on the available evidence, waterpipe tobacco smoking was significantly associated with lung cancer [odds ratio (OR) = 2.12; 95% confidence interval (CI) 1.32-3.42], respiratory illness (OR = 2.3; 95% CI 1.1-5.1), low birth-weight (OR = 2.12; 95% CI 1.08-4.18) and periodontal disease (OR = 3-5). It was not significantly associated with bladder cancer (OR = 0.8; 95% CI 0.2-4.0), nasopharyngeal cancer (OR = 0.49; 95% CI 0.20-1.23), oesophageal cancer (OR = 1.85; 95% CI 0.95-3.58), oral dysplasia (OR = 8.33; 95% CI 0.78-9.47) or infertility (OR = 2.5; 95% CI 1.0-6.3) but the CIs did not exclude important associations. Smoking waterpipe in groups was not significantly associated with hepatitis C infection (OR = 0.98; 95% CI 0.80-1.21). The quality of evidence for the different outcomes varied from very low to low. CONCLUSION Waterpipe tobacco smoking is possibly associated with a number of deleterious health outcomes. There is a need for high-quality studies to identify and quantify with confidence all the health effects of this form of smoking.

Collaboration


Dive into the Elie A. Akl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D Oxman

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge