Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elin Säwén is active.

Publication


Featured researches published by Elin Säwén.


Organic and Biomolecular Chemistry | 2010

Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the ϕ, ψ-conformational space of the α-(1→2)-linked mannose disaccharide present in N- and O-linked glycoproteins

Elin Säwén; Tariq Massad; Clas Landersjö; Peter Damberg; Göran Widmalm

The conformational space available to the flexible molecule α-D-Manp-(1-->2)-α-D-Manp-OMe, a model for the α-(1-->2)-linked mannose disaccharide in N- or O-linked glycoproteins, is determined using experimental data and molecular simulation combined with a maximum entropy approach that leads to a converged population distribution utilizing different input information. A database survey of the Protein Data Bank where structures having the constituent disaccharide were retrieved resulted in an ensemble with >200 structures. Subsequent filtering removed erroneous structures and gave the database (DB) ensemble having three classes of mannose-containing compounds, viz., N- and O-linked structures, and ligands to proteins. A molecular dynamics (MD) simulation of the disaccharide revealed a two-state equilibrium with a major and a minor conformational state, i.e., the MD ensemble. These two different conformation ensembles of the disaccharide were compared to measured experimental spectroscopic data for the molecule in water solution. However, neither of the two populations were compatible with experimental data from optical rotation, NMR (1)H,(1)H cross-relaxation rates as well as homo- and heteronuclear (3)J couplings. The conformational distributions were subsequently used as background information to generate priors that were used in a maximum entropy analysis. The resulting posteriors, i.e., the population distributions after the application of the maximum entropy analysis, still showed notable deviations that were not anticipated based on the prior information. Therefore, reparameterization of homo- and heteronuclear Karplus relationships for the glycosidic torsion angles Φ and Ψ were carried out in which the importance of electronegative substituents on the coupling pathway was deemed essential resulting in four derived equations, two (3)J(COCC) and two (3)J(COCH) being different for the Φ and Ψ torsions, respectively. These Karplus relationships are denoted JCX/SU09. Reapplication of the maximum entropy analysis gave excellent agreement between the MD- and DB-posteriors. The information entropies show that the current reparametrization of the Karplus relationships constitutes a significant improvement. The Φ(H) torsion angle of the disaccharide is governed by the exo-anomeric effect and for the dominating conformation Φ(H) = -40 degrees and Ψ(H) = 33 degrees. The minor conformational state has a negative Ψ(H) torsion angle; the relative populations of the major and the minor states are approximately 3 : 1. It is anticipated that application of the methodology will be useful to flexible molecules ranging from small organic molecules to large biomolecules.


Carbohydrate Research | 2011

Complete 1H and 13C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper

Mattias U. Roslund; Elin Säwén; Jens Landström; Jerk Rönnols; K. Hanna M. Jonsson; Magnus Lundborg; Mona V. Svensson; Göran Widmalm

The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.


Chemistry: A European Journal | 2009

Conformational Flexibility and Dynamics of Two (1→6)‐Linked Disaccharides Related to an Oligosaccharide Epitope Expressed on Malignant Tumour Cells

Ulrika Olsson; Elin Säwén; Roland Stenutz; Göran Widmalm

The conformational flexibility and dynamics of two (1-->6)-linked disaccharides that are related to the action of the glycosyl transferase GnT-V have been investigated. NMR NOE and T-ROE spectroscopy experiments, conformation-dependent coupling constants and molecular dynamics (MD) simulations were used in the analyses. To facilitate these studies, the compounds were synthesised as alpha-d-[6-(13)C]-Manp-OMe derivatives, which reduced the (1)H NMR spectral overlap and facilitated the determination of two- and three-bond (1)H,(1)H, (1)H,(13)C and (13)C,(13)C-coupling constants. The population distribution for the glycosidic omega torsion angle in alpha-d-Manp-(1-->6)-alpha-d-Manp-OMe for gt/gg/tg was equal to 45:50:5, whereas in alpha-d-Manp-OMe it was determined to be 56:36:8. The dynamic model that was generated for beta-d-GlcpNAc-(1-->6)-alpha-d-Manp-OMe by MD simulations employing the PARM22/SU01 CHARMM-based force field was in very good agreement with experimental observations. beta-d-GlcpNAc-(1-->6)-alpha-d-Manp-OMe is described by an equilibrium of populated states in which the phi torsion angle has the exo-anomeric conformation, the psi torsion angle an extended antiperiplanar conformation and the omega torsion angle a distribution of populations predominantly between the gauche-trans and the gauche-gauche conformational states (i.e., gt/gg/tg) is equal to 60:35:5, respectively. The use of site-specific (13)C labelling in these disaccharides leads to increased spectral dispersion, thereby making NMR spectroscopy based conformational analysis possible that otherwise might be difficult to attain.


Physical Chemistry Chemical Physics | 2010

The dynamics of GATG glycodendrimers by NMR diffusion and quantitative 13C relaxation

Ramon Novoa-Carballal; Elin Säwén; Eduardo Fernandez-Megia; Juan Correa; Ricardo Riguera; Göran Widmalm

The dynamics of GATG glycodendrimers have been investigated by NMR translational diffusion and quantitative (13)C relaxation studies (Lipari-Szabo model-free), allowing the determination of the correlation times describing the dendrimer segmental orientational mobility.


Carbohydrate Research | 2012

Structural studies of the O-antigenic polysaccharide from Plesiomonas shigelloides strain AM36565

Elin Säwén; Jennie Östervall; Clas Landersjö; Malin Edblad; Andrej Weintraub; Mohammad Ansaruzzaman; Göran Widmalm

The structure of the repeating unit of the O-antigenic polysaccharide from Plesiomonas shigelloides strain AM36565 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by (1)H,(13)C heteronuclear multiple-bond correlation, (1)H,(1)H-NOESY, and (1)H,(13)C-HSQC-(1)H,(1)H-NOESY experiments. The O-antigen polysaccharide is composed of repeating units with the following structure: →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)[β-D-GalpNAc-(1→3)]-α-D-GlcpNAc-(1→, in which the monosaccharide side-chain substitutes the backbone in half of the repeating units. A matrix-assisted laser desorption/ionization mass spectrometry experiment suggested that the polysaccharide consists of two regions, one with tetrasaccharide repeating units and one with trisaccharide repeating units.


Journal of Physical Chemistry B | 2011

Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.

Elin Säwén; Baltzar Stevensson; Jennie Östervall; Arnold Maliniak; Göran Widmalm

The conformational dynamics of the human milk oligosaccharide lacto-N-fucopentaose (LNF-1), α-L-Fucp-(1 → 2)-β-D-Galp-(1 → 3)-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, has been analyzed using NMR spectroscopy and molecular dynamics (MD) computer simulations. Employing the Hadamard (13)C-excitation technique and the J-HMBC experiment, (1)H,(13)C trans-glycosidic J coupling constants were obtained, and from one- and two-dimensional (1)H,(1)H T-ROESY experiments, proton-proton cross-relaxation rates were determined in isotropic D(2)O solution. In the lyotropic liquid-crystalline medium consisting of ditetradecylphosphatidylcholine, dihexylphosphatidylcholine, N-cetyl-N,N,N-trimethylammonium bromide, and D(2)O, (1)H, (1)H and one-bond (1)H, (13)C residual dipolar couplings (RDCs), as well as relative sign information on homonuclear RDCs, were determined for the pentasaccharide. Molecular dynamics simulations with explicit water were carried out from which the internal isomerization relaxation time constant, τ(N), was calculated for transitions at the ψ torsion angle of the β-(1 → 3) linkage to the lactosyl group in LNF-1. Compared to the global reorientation time, τ(M), of ∼0.6 ns determined experimentally in D(2)O solution, the time constant for the isomerization relaxation process, τ(N(scaled)), is about one-third as large. The NMR parameters derived from the isotropic solution show very good agreement with those calculated from the MD simulations. The only notable difference occurs at the reducing end, which should be more flexible than observed by the molecular simulation, a conclusion in complete agreement with previous (13)C NMR relaxation data. A hydrogen-bond analysis of the MD simulation revealed that inter-residue hydrogen bonds on the order of ∼30% were present across the glycosidic linkages to sugar ring oxygens. This finding highlights that intramolecular hydrogen bonds might be important in preserving well-defined structures in otherwise flexible molecules. An analysis including generalized order parameters obtained from nuclear spin relaxation experiments was performed and successfully shown to limit the conformational space accessible to the molecule when the number of experimental data are too scarce for a complete conformational analysis.


Journal of Physical Chemistry B | 2013

Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of β-L-Fucp-(1→6)-α-D-Glcp-OMe in water solution.

Robert Pendrill; Elin Säwén; Göran Widmalm

The intrinsic flexibility of carbohydrates facilitates different 3D structures in response to altered environments. At glycosidic (1→6)-linkages, three torsion angles are variable, and herein the conformation and dynamics of β-L-Fucp-(1→6)-α-D-Glcp-OMe are investigated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. The disaccharide shows evidence of conformational averaging for the ψ and ω torsion angles, best explained by a four-state conformational distribution. Notably, there is a significant population of conformations having ψ = 85° (clinal) in addition to those having ψ = 180° (antiperiplanar). Moderate differences in (13)C R1 relaxation rates are found to be best explained by axially symmetric tumbling in combination with minor differences in librational motion for the two residues, whereas the isomerization motions are occurring too slowly to be contributing significantly to the observed relaxation rates. The MD simulation was found to give a reasonably good agreement with experiment, especially with respect to diffusive properties, among which the rotational anisotropy, D∥/D⊥, is found to be 2.35. The force field employed showed too narrow ω torsion angles in the gauche-trans and gauche-gauche states as well as overestimating the population of the gauche-trans conformer. This information can subsequently be used in directing parameter developments and emphasizes the need for refinement of force fields for (1→6)-linked carbohydrates.


Organic and Biomolecular Chemistry | 2012

Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations

Elin Säwén; Florian Hinterholzinger; Clas Landersjö; Göran Widmalm

Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ϕ torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.


Carbohydrate Research | 2010

Synthesis and conformational analysis of carbasugar bioisosteres of α-l-iduronic acid and its methyl glycoside

Elin Säwén; Mattias U. Roslund; Ian Cumpstey; Göran Widmalm

The synthesis of two novel carbasugar analogues of alpha-L-iduronic acid is described in which the ring-oxygen is replaced by a methylene group. In analogy with the conformational equilibrium described for alpha-L-IdopA, the conformation of the carbasugars was investigated by (1)H and (13)C NMR spectroscopy. Hadamard transform NMR experiments were utilised for rapid acquisition of (1)H,(13)C-HSQC spectra and efficient measurements of heteronuclear long-range coupling constants. Analysis of (1)H NMR chemical shifts and J(H,H) coupling constants extracted by a total-lineshape fitting procedure in conjunction with J(H,C) coupling constants obtained by three different 2D NMR experiments, viz., (1)H,(13)C-HSQC-HECADE, J-HMBC and IPAP-HSQC-TOCSY-HT, as well as effective proton-proton distances from 1D (1)H,(1)H T-ROE and NOE experiments showed that the conformational equilibrium [formula in text] is shifted towards (4)C(1) as the predominant or exclusive conformation. These carbasugar bioisosteres of alpha-l-iduronic acid do not as monomers show the inherent flexibility that is anticipated to be necessary for biological activity.


Physical Chemistry Chemical Physics | 2016

Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations

Mingjun Yang; Thibault Angles d'Ortoli; Elin Säwén; Madhurima Jana; Göran Widmalm; Alexander D. MacKerell

The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence.

Collaboration


Dive into the Elin Säwén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrej Weintraub

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge