Eline Menu
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eline Menu.
Blood | 2014
Jinheng Wang; An Hendrix; Sophie Hernot; Miguel Lemaire; Elke De Bruyne; Els Van Valckenborgh; Tony Lahoutte; Olivier De Wever; Karin Vanderkerken; Eline Menu
The interplay between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells performs a crucial role in MM pathogenesis by secreting growth factors, cytokines, and extracellular vesicles. Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and they mediate local cell-to-cell communication by transferring mRNAs, miRNAs, and proteins. Although BMSC-induced growth and drug resistance of MM cells has been studied, the role of BMSC-derived exosomes in this action remains unclear. Here we investigate the effect of BMSC-derived exosomes on the viability, proliferation, survival, migration, and drug resistance of MM cells, using the murine 5T33MM model and human MM samples. BMSCs and MM cells could mutually exchange exosomes carrying certain cytokines. Both naive and 5T33 BMSC-derived exosomes increased MM cell growth and induced drug resistance to bortezomib. BMSC-derived exosomes also influenced the activation of several survival relevant pathways, including c-Jun N-terminal kinase, p38, p53, and Akt. Exosomes obtained from normal donor and MM patient BMSCs also induced survival and drug resistance of human MM cells. Taken together, our results demonstrate the involvement of exosome-mediated communication in BMSC-induced proliferation, migration, survival, and drug resistance of MM cells.
British Journal of Cancer | 2004
Eline Menu; R Kooijman; E Van Valckenborgh; Kewal Asosingh; Marleen Bakkus; B Van Camp; Karin Vanderkerken
Insulin-like growth factor-1 (IGF-1) has been described as an important factor in proliferation, cell survival and migration of multiple myeloma (MM) cells. Angiogenesis correlates with development and prognosis of the MM disease. Vascular endothelial growth factor (VEGF) is one of the prominent factors involved in this process. The different functions of IGF-1 were investigated in the 5TMM mouse model with emphasis on proliferation, migration and VEGF secretion, and the signalling pathways involved. Western Blot analysis revealed that ERK1/2 and Akt (PKB) were activated after IGF-1 stimulation. The activation of ERK1/2 was reduced by the PI3K inhibitor Wortmannin, implying that the PI3K pathway is involved in its activation. Insulin-like growth factor-1 induced an increase in DNA synthesis in MM cells, which was mediated by a PI3K/Akt-MEK/ERK pathway. Insulin-like growth factor-1 enhanced F-actin assembly and this process was only PI3K mediated. Stimulation by IGF-1 of VEGF production was reduced by PD98059, indicating that only the MEK–ERK pathway is involved in IGF-1-stimulated VEGF production. In conclusion, IGF-1 mediates its multiple effects on MM cells through different signal transduction pathways. In the future, we can study the potential in vivo effects of IGF-1 inhibition on tumour growth and angiogenesis in MM.
Cancer Research | 2008
Eline Menu; Josefina Garcia; Xiangao Huang; Maurizio Di Liberto; Peter L. Toogood; Isan Chen; Karin Vanderkerken; Selina Chen-Kiang
Multiple myeloma (MM) remains incurable partly because no effective cell cycle-based therapy has been available to both control tumor cell proliferation and synergize with cytotoxic killing. PD 0332991 is an orally active small molecule that potently and specifically inhibits Cdk4 and Cdk6. It has been shown to induce rapid G(1) cell cycle arrest in primary human myeloma cells and suppress tumor growth in xenograft models. To improve therapeutic targeting of myeloma progression, we combined tumor suppression by PD 0332991 with cytotoxic killing by bortezomib, a proteasome inhibitor widely used in myeloma treatment, in the immunocompetent 5T33MM myeloma model. We show that 5T33MM tumor cells proliferate aggressively in vivo due to expression of cyclin D2, elevation of Cdk4, and impaired p27(Kip1) expression, despite inhibition of Cdk4/6 by p18(INK4c) and the maintenance of a normal plasma cell transcription program. PD 0332991 potently inhibits Cdk4/6-specific phosphorylation of Rb and cell cycle progression through G(1) in aggressively proliferating primary 5T33MM cells, in vivo and ex vivo. This leads to tumor suppression and a significant improvement in survival. Moreover, induction of G(1) arrest by PD 0332991 sensitizes 5T33MM tumor cells to killing by bortezomib. Inhibition of Cdk4/6 by PD 0332991, therefore, effectively controls myeloma tumor expansion and sensitizes tumor cells to bortezomib killing in the presence of an intact immune system, thereby representing a novel and promising cell cycle-based combination therapy.
Clinical & Experimental Metastasis | 2006
Eline Menu; Evy De Leenheer; Hendrik De Raeve; Les Coulton; Takeshi Imanishi; Kazuyuki Miyashita; Els Van Valckenborgh; Ivan Van Riet; Ben Van Camp; Richard Horuk; Peter I. Croucher; Karin Vanderkerken
Multiple myeloma (MM) is a plasma cell malignancy, characterized by the localization of the MM cells in the bone marrow (BM), where they proliferate and induce osteolysis. The MM cells first need to home or migrate to the BM to receive necessary survival signals. In this work, we studied the role of CCR1 and CCR5, two known chemokine receptors, in both chemotaxis and osteolysis in the experimental 5TMM mouse model. A CCR1–specific (BX471) and a CCR5–specific (TAK779) antagonist were used to identify the function of both receptors. We could detect by RT-PCR and flow cytometric analyses the expression of both CCR1 and CCR5 on the cells and their major ligand, macrophage inflammatory protein 1α (MIP1α) could be detected by ELISA. In vitro migration assays showed that MIP1α induced a 2-fold increase in migration of 5TMM cells, which could only be blocked by TAK779. In vivo homing kinetics showed a 30% inhibition in BM homing when 5TMM cells were pre-treated with TAK779. We found, in vitro, that both inhibitors were able to reduce osteoclastogenesis and osteoclastic resorption. In vivo end-term treatment of 5T2MM mice with BX471 resulted in a reduction of the osteolytic lesions by 40%; while TAK779 treatment led to a 20% decrease in lesions. Furthermore, assessment of the microvessel density demonstrated a role for both receptors in MM induced angiogenesis. These data demonstrate the differential role of CCR1 and CCR5 in MM chemotaxis and MM associated osteolysis and angiogenesis.
International Journal of Cancer | 2007
Eline Menu; Helena Jernberg-Wiklund; Hendrik De Raeve; Evy De Leenheer; Les Coulton; Orla Gallagher; Els Van Valckenborgh; Olle Larsson; Magnus Axelson; Kenneth Nilsson; Ben Van Camp; Peter I. Croucher; Karin Vanderkerken
During the last decade, a central role for insulin‐like growth factor 1 (IGF‐1) in the pathophysiology of multiple myeloma (MM) has been well established. IGF‐I provided by the tumor–microenvironment interaction may directly and indirectly facilitate the migration, survival and expansion of the MM cells in the bone marrow (BM). The inhibition of the IGF‐1R‐mediated signaling pathway has recently been suggested to be a possible new therapeutic principle in MM. Using the mouse 5T2MM model, we now demonstrate that targeting the IGF‐1R using picropodophyllin (PPP) in a therapeutical setting not only has strong antitumor activity on the established MM tumor but also influences the BM microenvironment by inhibiting angiogenesis and bone disease, having a profound effect on the survival of the mice. At therapeutically achievable concentrations of PPP, the average survival was 180 days for the PPP‐treated mice as compared to 100 days for vehicle‐treated mice. PPP used as single drug treatment in the 5T2MM model resulted in a decrease of tumor burden by 65% while the paraprotein concentrations were reduced by 75%. This decrease was associated with a significant inhibition of tumor‐associated angiogenesis and osteolysis. The present studies on the biological effects of PPP in the 5T2MM model constitute an important experimental platform for future therapeutic implementation.
Stem Cells | 2012
Song Xu; Eline Menu; Ann De Becker; Ben Van Camp; Karin Vanderkerken; Ivan Van Riet
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells that are predominantly localized in the bone marrow (BM). Mesenchymal stromal cells (MSCs) give rise to most BM stromal cells that interact with MM cells. However, the direct involvement of MSCs in the pathophysiology of MM has not been well addressed. In this study, in vitro and in vivo migration assays revealed that MSCs have tropism toward MM cells, and CCL25 was identified as a major MM cell‐produced chemoattractant for MSCs. By coculture experiments, we found that MSCs favor the proliferation of stroma‐dependent MM cells through soluble factors and cell to cell contact, which was confirmed by intrafemoral coengraftment experiments. We also demonstrated that MSCs protected MM cells against spontaneous and Bortezomib‐induced apoptosis. The tumor‐promoting effect of MSCs correlated with their capacity to enhance AKT and ERK activities in MM cells, accompanied with increased expression of CyclinD2, CDK4, and Bcl‐XL and decreased cleaved caspase‐3 and poly(ADP‐ribose) polymerase expression. In turn, MM cells upregulated interleukin‐6 (IL‐6), IL‐10, insulin growth factor‐1, vascular endothelial growth factor, and dickkopf homolog 1 expression in MSCs. Finally, infusion of in vitro‐expanded murine MSCs in 5T33MM mice resulted in a significantly shorter survival. MSC infusion is a promising way to support hematopoietic recovery and to control graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation. However, our data suggest that MSC‐based cytotherapy has a potential risk for MM disease progression or relapse and should be considered with caution in MM patients. STEM CELLS 2012; 30:266–279.
Cancer Research | 2009
Sarah Deleu; Miguel Lemaire; Janine Arts; Eline Menu; Els Van Valckenborgh; Isabelle Vande Broek; Hendrik De Raeve; Les Coulton; Ben Van Camp; Peter I. Croucher; Karin Vanderkerken
The proteasome inhibitor bortezomib (Velcade) is currently approved as second-line treatment of multiple myeloma (MM). MM-related bone disease is one of the most debilitating complications of MM. Besides supportive care with biphosphonates, which have proven efficacy in reducing and delaying skeletal-related events, there is no specific treatment of lytic bone lesions. The present study investigated the effect of bortezomib alone or in combination with a hydroxamate-based histone deacetylase inhibitor, JNJ-26481585 on tumor burden, and MM bone disease in the 5T2MM model. Injection of 5T2MM cells into C57Bl/KaLwRij mice resulted in MM bone disease, characterized by an increase in the percentage osteoclasts, a decrease in osteoblasts, trabecular bone volume, trabecular number, and the development of bone lesions. Treatment of 5T2MM-bearing mice with bortezomib significantly reduced tumor burden, angiogenesis, and MM bone disease. More importantly, the combination of bortezomib with JNJ-26481585 resulted in a more pronounced reduction of osteoclasts and increase of osteoblasts, trabecular bone volume, and trabecular number compared with bortezomib as single agent. These data suggest that bortezomib has bone remodeling properties that can be improved in combination with low dose JNJ-26481585. The study indicates that this combination therapy could be a useful strategy for the treatment of MM patients, especially in those patients with skeletal complications.
Blood | 2012
Jinsong Hu; Nana Dang; Eline Menu; Elke De Bryune; Dehui Xu; Ben Van Camp; Els Van Valckenborgh; Karin Vanderkerken
Myeloid cell leukemia-1 (Mcl-1) protein is an anti-apoptotic Bcl-2 family protein that plays essential roles in multiple myeloma (MM) survival and drug resistance. In MM, it has been demonstrated that proteasome inhibition can trigger the accumulation of Mcl-1, which has been shown to confer MM cell resistance to bortezomib-induced lethality. However, the mechanisms involved in this unwanted Mcl-1 accumulation are still unclear. The aim of the present study was to determine whether the unwanted Mcl-1 accumulation could be induced by the unfolded protein response (UPR) and to elucidate the role of the endoplasmic reticulum stress response in regulating Mcl-1 expression. Using quantitative RT-PCR and Western blot, we found that the translation of activating transcription factor-4 (ATF4), an important effector of the UPR, was also greatly enhanced by proteasome inhibition. ChIP analysis further revealed that bortezomib stimulated binding of ATF4 to a regulatory site (at position -332 to -324) at the promoter of the Mcl-1 gene. Knocking down ATF4 was paralleled by down-regulation of Mcl-1 induction by bortezomib and significantly increased bortezomib-induced apoptosis. These data identify the UPR and, more specifically, its ATF4 branch as an important mechanism mediating up-regulation of Mcl-1 by proteasome inhibition.
Frontiers in Oncology | 2014
Kim De Veirman; Els Van Valckenborgh; Qods Lahmar; Xenia Geeraerts; Elke De Bruyne; Eline Menu; Ivan Van Riet; Karin Vanderkerken; Jo A. Van Ginderachter
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion, and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion, and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell–cell interactions, and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma, and leukemia.
Advances in Cancer Research | 2011
Miguel Lemaire; Sarah Deleu; Elke De Bruyne; Els Van Valckenborgh; Eline Menu; Karin Vanderkerken
Multiple myeloma (MM) is a deadly plasma cell cancer that resides in the bone marrow (BM). Numerous studies have demonstrated the involvement of the BM microenvironment supporting tumor growth, angiogenesis, bone disease and drug resistance. Reciprocal interactions between the different components of the BM microenvironment and the MM cells are necessary to regulate migration, differentiation, proliferation and survival of the malignant plasma cells. In this review we focus on the interactions and molecular mechanisms by which the BM microenvironment exert these effects. Better understanding of these interactions and the study of the epigenetic changes that tumor cells undergo are necessary in order to improve current treatments and for the discovery of new therapies that may eventually lead to a potential cure.