Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elke De Bruyne is active.

Publication


Featured researches published by Elke De Bruyne.


Blood | 2014

Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells

Jinheng Wang; An Hendrix; Sophie Hernot; Miguel Lemaire; Elke De Bruyne; Els Van Valckenborgh; Tony Lahoutte; Olivier De Wever; Karin Vanderkerken; Eline Menu

The interplay between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells performs a crucial role in MM pathogenesis by secreting growth factors, cytokines, and extracellular vesicles. Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and they mediate local cell-to-cell communication by transferring mRNAs, miRNAs, and proteins. Although BMSC-induced growth and drug resistance of MM cells has been studied, the role of BMSC-derived exosomes in this action remains unclear. Here we investigate the effect of BMSC-derived exosomes on the viability, proliferation, survival, migration, and drug resistance of MM cells, using the murine 5T33MM model and human MM samples. BMSCs and MM cells could mutually exchange exosomes carrying certain cytokines. Both naive and 5T33 BMSC-derived exosomes increased MM cell growth and induced drug resistance to bortezomib. BMSC-derived exosomes also influenced the activation of several survival relevant pathways, including c-Jun N-terminal kinase, p38, p53, and Akt. Exosomes obtained from normal donor and MM patient BMSCs also induced survival and drug resistance of human MM cells. Taken together, our results demonstrate the involvement of exosome-mediated communication in BMSC-induced proliferation, migration, survival, and drug resistance of MM cells.


Frontiers in Oncology | 2014

Myeloid-Derived Suppressor Cells as Therapeutic Target in Hematological Malignancies

Kim De Veirman; Els Van Valckenborgh; Qods Lahmar; Xenia Geeraerts; Elke De Bruyne; Eline Menu; Ivan Van Riet; Karin Vanderkerken; Jo A. Van Ginderachter

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion, and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion, and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell–cell interactions, and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma, and leukemia.


Advances in Cancer Research | 2011

The microenvironment and molecular biology of the multiple myeloma tumor.

Miguel Lemaire; Sarah Deleu; Elke De Bruyne; Els Van Valckenborgh; Eline Menu; Karin Vanderkerken

Multiple myeloma (MM) is a deadly plasma cell cancer that resides in the bone marrow (BM). Numerous studies have demonstrated the involvement of the BM microenvironment supporting tumor growth, angiogenesis, bone disease and drug resistance. Reciprocal interactions between the different components of the BM microenvironment and the MM cells are necessary to regulate migration, differentiation, proliferation and survival of the malignant plasma cells. In this review we focus on the interactions and molecular mechanisms by which the BM microenvironment exert these effects. Better understanding of these interactions and the study of the epigenetic changes that tumor cells undergo are necessary in order to improve current treatments and for the discovery of new therapies that may eventually lead to a potential cure.


Clinical Cancer Research | 2008

Epigenetic Silencing of the Tetraspanin CD9 during Disease Progression in Multiple Myeloma Cells and Correlation with Survival

Elke De Bruyne; Tomas Jan Bos; Kewal Asosingh; Isabelle Vande Broek; Eline Menu; Els Van Valckenborgh; Peter Atadja; Valérie Coiteux; Xavier Leleu; Kris Thielemans; Ben Van Camp; Karin Vanderkerken; Ivan Van Riet

Purpose: The purpose of this study was to investigate expression and epigenetic regulation of CD9 in multiple myeloma (MM) cells during disease progression. Experimental Design: CD9 expression was retrospectively analyzed on bone marrow myeloma samples from 81 patients by immunophenotyping. CD9 expression by murine 5TMM cells was detected by flow cytometric staining and quantitative PCR. The methylation status of the CD9 promoter was determined by bisulfite PCR sequencing. Results: Primary plasma cells in the majority of MM patients with nonactive disease (n = 28) showed CD9 expression, whereas most cases with active disease (n = 53) were CD9 negative. CD9 expression in diagnostic bone marrow samples (n = 74) correlated with survival. Moreover, CD9 expression on murine 5T33 and 5T2MM cells was significantly down-regulated during disease development. Treatment of CD9-nonexpressing 5T33MMvt cells with the clinically relevant histone deacetylase inhibitor LBH589 resulted in a significant increase in CD9 expression. In contrast, cells treated with the demethylation agent 5-aza-2′deoxycytidine barely showed any increase. A combination study with both compounds resulted in a strong synergistic reactivation of CD9. CD9-expressing 5T33MMvv cells and 5T33MMvt cells stably transduced with a mCD9 lentiviral transferplasmid were shown to be more susceptible to natural killer cell–mediated cytolysis than CD9-negative 5T33MMvt cells. Conclusions: CD9 expression correlates with disease status and survival of MM patients. In the murine 5T33MM model, we show that histone modifications, and to a lesser extent CpG methylation, are key epigenetic events in CD9 down-regulation. Furthermore, as CD9 expression becomes down-regulated, 5T33MM cells become less susceptible to natural killer cell–mediated cytolysis.


American Journal of Pathology | 2004

Multifunctional Role of Matrix Metalloproteinases in Multiple Myeloma: A Study in the 5T2MM Mouse Model

Els Van Valckenborgh; Peter I. Croucher; Hendrik De Raeve; Chris Carron; Evy De Leenheer; Sylvia Blacher; Laetitia Devy; Agnès Noël; Elke De Bruyne; Kewal Asosingh; Ivan Van Riet; Ben Van Camp; Karin Vanderkerken

Matrix metalloproteinases (MMPs) are known to play a role in cell growth, invasion, angiogenesis, metastasis, and bone degradation, all important events in the pathogenesis of cancer. Multiple myeloma is a B-cell cancer characterized by the proliferation of malignant plasma cells in the bone marrow, increased angiogenesis, and the development of osteolytic bone disease. The role of MMPs in the development of multiple myeloma is poorly understood. Using SC-964, a potent inhibitor of several MMPs (MMP-2, -3, -8, -9, and -13), we investigated the role of MMPs in the 5T2MM murine model. Reverse transcriptase-polymerase chain reaction demonstrated the presence of mRNA for MMP-2, -8, -9, and -13 in 5T2MM-diseased bone marrow. Mice bearing 5T2MM cells were given access to food containing SC-964. The concentration of SC-964 measured in the plasma of mice after 11 days of treatment was able to inhibit MMP-9 activity in gelatin zymography. Treatment of 5T2MM-bearing mice resulted in a significant reduction in tumor burden, a significant decrease in angiogenesis, and partially protective effect against the development of osteolytic bone disease. The direct role of MMPs in these different processes was confirmed by in vitro experiments. All these results support the multifunctional role of MMPs in the development of multiple myeloma.


Cancers | 2014

Cancer associated fibroblasts and tumor growth: focus on multiple myeloma.

Kim De Veirman; Luigia Rao; Elke De Bruyne; Eline Menu; Els Van Valckenborgh; Ivan Van Riet; Maria Antonia Frassanito; Lucia Di Marzo; Angelo Vacca; Karin Vanderkerken

Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.


Cancers | 2013

Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

Ken Maes; Eline Menu; Els Van Valckenborgh; Ivan Van Riet; Karin Vanderkerken; Elke De Bruyne

Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.


Oncotarget | 2015

The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells

Jinheng Wang; Kim De Veirman; Nathan De Beule; Ken Maes; Elke De Bruyne; Els Van Valckenborgh; Karin Vanderkerken; Eline Menu

Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression.


Disease Models & Mechanisms | 2012

Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models

Jinsong Hu; Els Van Valckenborgh; Eline Menu; Elke De Bruyne; Karin Vanderkerken

Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the clonal expansion of plasma cells in the bone marrow. Recently, hypoxia has received increased interest in the context of MM, in both basic and translational research. In this review, we describe the discovery of the hypoxic niche in MM and how it can be targeted therapeutically. We also discuss mouse models that closely mimic human MM, highlighting those that allow preclinical research into new therapies that exploit the hypoxic niche in MM.


Oncotarget | 2016

Novel strategies to target the ubiquitin proteasome system in multiple myeloma

Susanne Lub; Ken Maes; Eline Menu; Elke De Bruyne; Karin Vanderkerken; Els Van Valckenborgh

Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.

Collaboration


Dive into the Elke De Bruyne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eline Menu

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Maes

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Kim De Veirman

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ben Van Camp

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ivan Van Riet

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Dirk Hose

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Lemaire

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge