Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa A. Bellomo is active.

Publication


Featured researches published by Elisa A. Bellomo.


Journal of Cell Science | 2008

Initiation and execution of lipotoxic ER stress in pancreatic beta-cells.

Daniel Andrade Da Cunha; Paul Hekerman; Laurence Ladrière; Angie Bazarra-Castro; Fernanda Ortis; Marion C. Wakeham; Fabrice Moore; Joanne Rasschaert; Alessandra K Cardozo; Elisa A. Bellomo; Lutgart Overbergh; Chantal Mathieu; R Lupi; Tsonwin Hai; André Herchuelz; Piero Marchetti; Guy A. Rutter; Decio L. Eizirik; Miriam Cnop

Free fatty acids (FFA) cause apoptosis of pancreatic β-cells and might contribute to β-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary β-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling. Palmitate induced more apoptosis and markedly activated the IRE1, PERK and ATF6 pathways, owing to a sustained depletion of ER Ca2+ stores, whereas the unsaturated FFA oleate led to milder PERK and IRE1 activation and comparable ATF6 signaling. Non-metabolizable methyl-FFA analogs induced neither ER stress nor β-cell apoptosis. The FFA-induced ER stress response was not modified by high glucose concentrations, suggesting that ER stress in primary β-cells is primarily lipotoxic, and not glucolipotoxic. Palmitate, but not oleate, activated JNK. JNK inhibitors reduced palmitate-mediated AP-1 activation and apoptosis. Blocking the transcription factor CHOP delayed palmitate-induced β-cell apoptosis. In conclusion, saturated FFA induce ER stress via ER Ca2+ depletion. The IRE1 and resulting JNK activation contribute to β-cell apoptosis. PERK activation by palmitate also contributes to β-cell apoptosis via CHOP.


Diabetes | 2009

Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

Tamara J. Nicolson; Elisa A. Bellomo; Nadeeja Wijesekara; Merewyn K. Loder; Jocelyn M. Baldwin; Armen V. Gyulkhandanyan; Vasilij Koshkin; Andrei I. Tarasov; Raffaella Carzaniga; Katrin Kronenberger; Tarvinder K. Taneja; Gabriela da Silva Xavier; Sarah Libert; Philippe Froguel; Raphael Scharfmann; Volodymir Stetsyuk; Philippe Ravassard; Helen Parker; Fiona M. Gribble; Frank Reimann; Robert Sladek; Stephen J. Hughes; Paul R.V. Johnson; Myriam Masseboeuf; Rémy Burcelin; Stephen A. Baldwin; Ming Liu; Roberto Lara-Lemus; Peter Arvan; Frans Schuit

OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.


Nature Methods | 2009

Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis

Jan L. Vinkenborg; Tamara J. Nicolson; Elisa A. Bellomo; M.S.T. Koay; Guy A. Rutter; Maarten Merkx

We developed genetically encoded fluorescence resonance energy transfer (FRET)-based sensors that display a large ratiometric change upon Zn2+ binding, have affinities that span the pico- to nanomolar range and can readily be targeted to subcellular organelles. Using this sensor toolbox we found that cytosolic Zn2+ was buffered at 0.4 nM in pancreatic β cells, and we found substantially higher Zn2+ concentrations in insulin-containing secretory vesicles.


Journal of Clinical Investigation | 2013

Lipotoxicity disrupts incretin-regulated human β cell connectivity

David J. Hodson; Ryan K. Mitchell; Elisa A. Bellomo; Gao Sun; Laurent Vinet; Paolo Meda; Daliang Li; Wen Hong Li; Marco Bugliani; Piero Marchetti; Domenico Bosco; Lorenzo Piemonti; Paul Johnson; Stephen J. Hughes; Guy A. Rutter

Pancreatic β cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. β cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent β cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of β cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional β cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that β cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.


PLOS ONE | 2012

The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells.

Andrei I. Tarasov; Francesca Semplici; Magalie A. Ravier; Elisa A. Bellomo; Timothy J. Pullen; Patrick Gilon; Israel Sekler; Rosario Rizzuto; Guy A. Rutter

Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca2+ influx. As well as activating ATP-consuming processes, cytosolic Ca2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na+-Ca2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.


Journal of Biological Chemistry | 2011

Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP) and metallothionein gene expression in primary pancreatic islet β-cells.

Elisa A. Bellomo; Gargi Meur; Guy A. Rutter

Zn2+ is an important cofactor for insulin biosynthesis and storage in pancreatic β-cells. Correspondingly, polymorphisms in the SLC30A8 gene, encoding the secretory granule Zn2+ transporter ZnT8, are associated with type 2 diabetes risk. Using a genetically engineered (FRET)-based sensor (eCALWY-4), we show here that elevated glucose time-dependently increases free cytosolic Zn2+ ([Zn2+]cyt) in mouse pancreatic β-cells. These changes become highly significant (853 ± 96 pm versus 452 ± 42 pm, p < 0.001) after 24 h and are associated with increased expression of the Zn2+ importer family members Slc39a6, Slc39a7, and Slc39a8, and decreased expression of metallothionein 1 and 2. Arguing that altered expression of the above genes is not due to altered [Zn2+]cyt, elevation of extracellular (and intracellular) [Zn2+] failed to mimic the effects of high glucose. By contrast, increases in intracellular cAMP prompted by 3-isobutyl-1-methylxanthine and forskolin partially mimicked the effects of glucose on metallothionein, although not ZiP, gene expression. Modulation of intracellular Ca2+ and insulin secretion with pharmacological agents (tolbutamide and diazoxide) suggested a possible role for changes in these parameters in the regulation of Slc39a6 and Slc39a7 but not Slc39a8, nor metallothionein expression. In summary, 1) glucose induces increases in [Zn2+]cyt, which are then likely to facilitate the processing and/or the storage of insulin and its cocrystallization with Zn2+, and 2) these increases are associated with elevated expression of zinc importers. Conversely, a chronic increase in [Zn2+]cyt following sustained hyperglycemia may contribute to β-cell dysfunction and death in some forms of diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR)

Daliang Li; Shiuhwei Chen; Elisa A. Bellomo; Andrei I. Tarasov; Callan Kaut; Guy A. Rutter; Wen Hong Li

Current methods of monitoring insulin secretion lack the required spatial and temporal resolution to adequately map the dynamics of exocytosis of native insulin granules in intact cell populations in three dimensions. Exploiting the fact that insulin granules contain a high level of Zn2+, and that Zn2+ is coreleased with insulin during secretion, we have developed a fluorescent, cell surface-targeted zinc indicator for monitoring induced exocytotic release (ZIMIR). ZIMIR displayed a robust fluorescence enhancement on Zn2+ chelation and bound Zn2+ with high selectivity against Ca2+ and Mg2+. When added to cultured β cells or intact pancreatic islets at low micromolar concentrations, ZIMIR labeled cells rapidly, noninvasively, and stably, and it reliably reported changes in Zn2+ concentration near the sites of granule fusion with high sensitivity that correlated well with membrane capacitance measurement. Fluorescence imaging of ZIMIR-labeled β cells followed the dynamics of exocytotic activity at subcellular resolution, even when using simple epifluorescence microscopy, and located the chief sites of insulin release to intercellular junctions. Moreover, ZIMIR imaging of intact rat islets revealed that Zn2+/insulin release occurred largely in small groups of adjacent β cells, with each forming a “secretory unit.” Concurrent imaging of ZIMIR and Fura-2 showed that the amplitude of cytosolic Ca2+ elevation did not necessarily correlate with insulin secretion activity, suggesting that events downstream of Ca2+ signaling underlie the cell-cell heterogeneity in insulin release. In addition to studying stimulation-secretion coupling in cells with Zn2+-containing granules, ZIMIR may find applications in β-cell engineering and screening for molecules regulating insulin secretion on high-throughput platforms.


ACS Chemical Biology | 2014

Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn2+

Pauline Chabosseau; Erkan Tuncay; Gargi Meur; Elisa A. Bellomo; Am Anne Hessels; Stephen H. Hughes; Paul Johnson; Marco Bugliani; Piero Marchetti; Belma Turan; Alexander R. Lyon; Maarten Merkx; Guy A. Rutter

Zinc (Zn2+) ions are increasingly recognized as playing an important role in cellular physiology. Whereas the free Zn2+ concentration in the cytosol has been established to be 0.1-1 nM, the free Zn2+ concentration in subcellular organelles is not well-established. Here, we extend the eCALWY family of genetically encoded Förster Resonance Energy Transfer (FRET) Zn2+ probes to permit measurements in the endo(sarco)plasmic reticulum (ER) and mitochondrial matrix. Deployed in a variety of mammalian cell types, these probes reveal resting mitochondrial free [Zn2+] values of ∼300 pM, somewhat lower than in the cytosol but 3 orders of magnitude higher than recently reported using an alternative FRET-based sensor. By contrast, free ER [Zn2+] was found to be ≥5 nM, which is >5000-fold higher than recently reported but consistent with the proposed role of the ER as a mobilizable Zn2+ store. Treatment of β-cells or cardiomyocytes with sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors, mobilization of ER Ca2+ after purinergic stimulation with ATP, or manipulation of ER redox, exerted no detectable effects on [Zn2+]ER. These findings question the previously proposed role of Ca2+ in Zn2+ mobilization from the ER and suggest that high ER Zn2+ levels may be an important aspect of cellular homeostasis.


Proceedings of the Nutrition Society | 2016

Intracellular zinc in insulin secretion and action: a determinant of diabetes risk?

Guy A. Rutter; Pauline Chabosseau; Elisa A. Bellomo; Wolfgang Maret; Ryan K. Mitchell; David J. Hodson; Antonia Solomou; Ming Hu

Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.


Molecular Endocrinology | 2016

Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance

Ryan K. Mitchell; Ming Hu; Pauline Chabosseau; Matthew C. Cane; Gargi Meur; Elisa A. Bellomo; Raffaella Carzaniga; Lucy M. Collinson; Wen Hong Li; David J. Hodson; Guy A. Rutter

Zinc transporter 8 (ZnT8), encoded by SLC30A8, is chiefly expressed within pancreatic islet cells, where it mediates zinc (Zn2+) uptake into secretory granules. Although a common nonsynonymous polymorphism (R325W), which lowers activity, is associated with increased type 2 diabetes (T2D) risk, rare inactivating mutations in SLC30A8 have been reported to protect against T2D. Here, we generate and characterize new mouse models to explore the impact on glucose homeostasis of graded changes in ZnT8 activity in the β-cell. Firstly, Slc30a8 was deleted highly selectively in these cells using the novel deleter strain, Ins1Cre. The resultant Ins1CreZnT8KO mice displayed significant (P < .05) impairments in glucose tolerance at 10 weeks of age vs littermate controls, and glucose-induced increases in circulating insulin were inhibited in vivo. Although insulin release from Ins1CreZnT8KO islets was normal, Zn2+ release was severely impaired. Conversely, transgenic ZnT8Tg mice, overexpressing the transporter inducibly in the adult β-cell using an insulin promoter-dependent Tet-On system, showed significant (P < .01) improvements in glucose tolerance compared with control animals. Glucose-induced insulin secretion from ZnT8Tg islets was severely impaired, whereas Zn2+ release was significantly enhanced. Our findings demonstrate that glucose homeostasis in the mouse improves as β-cell ZnT8 activity increases, and remarkably, these changes track Zn2+ rather than insulin release in vitro. Activation of ZnT8 in β-cells might therefore provide the basis of a novel approach to treating T2D.

Collaboration


Dive into the Elisa A. Bellomo's collaboration.

Top Co-Authors

Avatar

Guy A. Rutter

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gargi Meur

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge