Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gargi Meur is active.

Publication


Featured researches published by Gargi Meur.


Journal of Biological Chemistry | 2011

Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP) and metallothionein gene expression in primary pancreatic islet β-cells.

Elisa A. Bellomo; Gargi Meur; Guy A. Rutter

Zn2+ is an important cofactor for insulin biosynthesis and storage in pancreatic β-cells. Correspondingly, polymorphisms in the SLC30A8 gene, encoding the secretory granule Zn2+ transporter ZnT8, are associated with type 2 diabetes risk. Using a genetically engineered (FRET)-based sensor (eCALWY-4), we show here that elevated glucose time-dependently increases free cytosolic Zn2+ ([Zn2+]cyt) in mouse pancreatic β-cells. These changes become highly significant (853 ± 96 pm versus 452 ± 42 pm, p < 0.001) after 24 h and are associated with increased expression of the Zn2+ importer family members Slc39a6, Slc39a7, and Slc39a8, and decreased expression of metallothionein 1 and 2. Arguing that altered expression of the above genes is not due to altered [Zn2+]cyt, elevation of extracellular (and intracellular) [Zn2+] failed to mimic the effects of high glucose. By contrast, increases in intracellular cAMP prompted by 3-isobutyl-1-methylxanthine and forskolin partially mimicked the effects of glucose on metallothionein, although not ZiP, gene expression. Modulation of intracellular Ca2+ and insulin secretion with pharmacological agents (tolbutamide and diazoxide) suggested a possible role for changes in these parameters in the regulation of Slc39a6 and Slc39a7 but not Slc39a8, nor metallothionein expression. In summary, 1) glucose induces increases in [Zn2+]cyt, which are then likely to facilitate the processing and/or the storage of insulin and its cocrystallization with Zn2+, and 2) these increases are associated with elevated expression of zinc importers. Conversely, a chronic increase in [Zn2+]cyt following sustained hyperglycemia may contribute to β-cell dysfunction and death in some forms of diabetes.


Diabetes | 2010

Insulin Gene Mutations Resulting in Early-Onset Diabetes: Marked Differences in Clinical Presentation, Metabolic Status, and Pathogenic Effect Through Endoplasmic Reticulum Retention

Gargi Meur; Albane Simon; Nasret Harun; Marie Virally; Aurélie Dechaume; Amélie Bonnefond; Sabrina Fetita; Andrei I. Tarasov; Pierre-Jean Guillausseau; Trine Welløv Boesgaard; Oluf Pedersen; Torben Hansen; Michel Polak; Jean François Gautier; Philippe Froguel; Guy A. Rutter; Martine Vaxillaire

OBJECTIVE Heterozygous mutations in the human preproinsulin (INS) gene are a cause of nonsyndromic neonatal or early-infancy diabetes. Here, we sought to identify INS mutations associated with maturity-onset diabetes of the young (MODY) or nonautoimmune diabetes in mid-adult life, and to explore the molecular mechanisms involved. RESEARCH DESIGN AND METHODS The INS gene was sequenced in 16 French probands with unexplained MODY, 95 patients with nonautoimmune early-onset diabetes (diagnosed at <35 years) and 292 normoglycemic control subjects of French origin. Three identified insulin mutants were generated by site-directed mutagenesis of cDNA encoding a preproinsulin–green fluorescent protein (GFP) (C-peptide) chimera. Intracellular targeting was assessed in clonal β-cells by immunocytochemistry and proinsulin secretion, by radioimmunoassay. Spliced XBP1 and C/EBP homologous protein were quantitated by real-time PCR. RESULTS A novel coding mutation, L30M, potentially affecting insulin multimerization, was identified in five diabetic individuals (diabetes onset 17–36 years) in a single family. L30M preproinsulin-GFP fluorescence largely associated with the endoplasmic reticulum (ER) in MIN6 β-cells, and ER exit was inhibited by ∼50%. Two additional mutants, R55C (at the B/C junction) and R6H (in the signal peptide), were normally targeted to secretory granules, but nonetheless caused substantial ER stress. CONCLUSIONS We describe three INS mutations cosegregating with early-onset diabetes whose clinical presentation is compatible with MODY. These led to the production of (pre)proinsulin molecules with markedly different trafficking properties and effects on ER stress, demonstrating a range of molecular defects in the β-cell.


ACS Chemical Biology | 2014

Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn2+

Pauline Chabosseau; Erkan Tuncay; Gargi Meur; Elisa A. Bellomo; Am Anne Hessels; Stephen H. Hughes; Paul Johnson; Marco Bugliani; Piero Marchetti; Belma Turan; Alexander R. Lyon; Maarten Merkx; Guy A. Rutter

Zinc (Zn2+) ions are increasingly recognized as playing an important role in cellular physiology. Whereas the free Zn2+ concentration in the cytosol has been established to be 0.1-1 nM, the free Zn2+ concentration in subcellular organelles is not well-established. Here, we extend the eCALWY family of genetically encoded Förster Resonance Energy Transfer (FRET) Zn2+ probes to permit measurements in the endo(sarco)plasmic reticulum (ER) and mitochondrial matrix. Deployed in a variety of mammalian cell types, these probes reveal resting mitochondrial free [Zn2+] values of ∼300 pM, somewhat lower than in the cytosol but 3 orders of magnitude higher than recently reported using an alternative FRET-based sensor. By contrast, free ER [Zn2+] was found to be ≥5 nM, which is >5000-fold higher than recently reported but consistent with the proposed role of the ER as a mobilizable Zn2+ store. Treatment of β-cells or cardiomyocytes with sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors, mobilization of ER Ca2+ after purinergic stimulation with ATP, or manipulation of ER redox, exerted no detectable effects on [Zn2+]ER. These findings question the previously proposed role of Ca2+ in Zn2+ mobilization from the ER and suggest that high ER Zn2+ levels may be an important aspect of cellular homeostasis.


Diabetes | 2012

Glucose-Induced Nuclear Shuttling of ChREBP Is Mediated by Sorcin and Ca2+ Ions in Pancreatic β-Cells

Nafeesa A. Noordeen; Gargi Meur; Guy A. Rutter; Isabelle Leclerc

Carbohydrate-responsive element-binding protein (ChREBP) is a regulator of pancreatic β-cell gene expression and an important mediator of glucotoxicity. Glucose increases the activity and nuclear localization of ChREBP by still ill-defined mechanisms. Here we reveal, using both MIN6 and primary mouse β-cells, a unique mechanism behind ChREBP nuclear translocation. At low glucose concentrations, ChREBP interacts with sorcin, a penta EF hand Ca2+ binding protein, and is sequestered in the cytosol. Sorcin overexpression inhibits ChREBP nuclear accumulation at high glucose and reduced the activity of L-type pyruvate kinase (L-PK) and TxNIP promoters, two well-characterized ChREBP target genes. Sorcin inactivation by RNA interference increases ChREBP nuclear localization and in vivo binding to the L-PK promoter at low glucose concentrations. Ca2+ influx was essential for this process since Ca2+ chelation with EGTA, or pharmacological inhibition with diazoxide and nifedipine, blocked the effects of glucose. Conversely, mobilization of intracellular Ca2+ with ATP caused the nuclear accumulation of ChREBP. Finally, sorcin silencing inhibited ATP-induced increases in intracellular Ca2+ and glucose-stimulated insulin secretion. We therefore conclude that sorcin retains ChREBP in the cytosol at low glucose concentrations and may act as a Ca2+ sensor for glucose-induced nuclear translocation and the activation of ChREBP-dependent genes.


Molecular Endocrinology | 2016

Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance

Ryan K. Mitchell; Ming Hu; Pauline Chabosseau; Matthew C. Cane; Gargi Meur; Elisa A. Bellomo; Raffaella Carzaniga; Lucy M. Collinson; Wen Hong Li; David J. Hodson; Guy A. Rutter

Zinc transporter 8 (ZnT8), encoded by SLC30A8, is chiefly expressed within pancreatic islet cells, where it mediates zinc (Zn2+) uptake into secretory granules. Although a common nonsynonymous polymorphism (R325W), which lowers activity, is associated with increased type 2 diabetes (T2D) risk, rare inactivating mutations in SLC30A8 have been reported to protect against T2D. Here, we generate and characterize new mouse models to explore the impact on glucose homeostasis of graded changes in ZnT8 activity in the β-cell. Firstly, Slc30a8 was deleted highly selectively in these cells using the novel deleter strain, Ins1Cre. The resultant Ins1CreZnT8KO mice displayed significant (P < .05) impairments in glucose tolerance at 10 weeks of age vs littermate controls, and glucose-induced increases in circulating insulin were inhibited in vivo. Although insulin release from Ins1CreZnT8KO islets was normal, Zn2+ release was severely impaired. Conversely, transgenic ZnT8Tg mice, overexpressing the transporter inducibly in the adult β-cell using an insulin promoter-dependent Tet-On system, showed significant (P < .01) improvements in glucose tolerance compared with control animals. Glucose-induced insulin secretion from ZnT8Tg islets was severely impaired, whereas Zn2+ release was significantly enhanced. Our findings demonstrate that glucose homeostasis in the mouse improves as β-cell ZnT8 activity increases, and remarkably, these changes track Zn2+ rather than insulin release in vitro. Activation of ZnT8 in β-cells might therefore provide the basis of a novel approach to treating T2D.


Journal of Biological Chemistry | 2011

Nucleo-cytosolic shuttling of FoxO1 directly regulates mouse Ins2 but not Ins1 gene expression in pancreatic beta cells (MIN6).

Gargi Meur; Qingwen Qian; Gabriela da Silva Xavier; Timothy J. Pullen; Takashi Tsuboi; Caroline McKinnon; Lm Fletcher; Jeremy M. Tavaré; Stephen H. Hughes; Paul Johnson; Guy A. Rutter

The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in pancreatic β cells and its consequences for preproinsulin (Ins1, Ins2) gene expression. Nuclear-localized endogenous FoxO1 translocated to the cytosol in response to elevated glucose (3 versus 16.7 mm) in human islet β cells. Real-time confocal imaging of nucleo-cytosolic shuttling of a FoxO1-EGFP chimera in primary mouse and clonal MIN6 β cells revealed a time-dependent glucose-responsive nuclear export, also mimicked by exogenous insulin, and blocked by suppressing insulin secretion. Constitutively active PI3K or protein kinase B/Akt exerted similar effects, while inhibitors of PI3K, but not of glycogen synthase kinase-3 or p70 S6 kinase, blocked nuclear export. FoxO1 overexpression reversed the activation by glucose of pancreatic duodenum homeobox-1 (Pdx1) transcription. Silencing of FoxO1 significantly elevated the expression of mouse Ins2, but not Ins1, mRNA at 3 mm glucose. Putative FoxO1 binding sites were identified in the distal promoter of rodent Ins2 genes and direct binding of FoxO1 to the Ins2 promoter was demonstrated by chromatin immunoprecipitation. A 915-bp glucose-responsive Ins2 promoter was inhibited by constitutively active FoxO1, an effect unaltered by simultaneous overexpression of PDX1. We conclude that nuclear import of FoxO1 contributes to the suppression of Pdx1 and Ins2 gene expression at low glucose, the latter via a previously unsuspected and direct physical interaction with the Ins2 promoter.


Journal of Biological Chemistry | 2007

Targeting and retention of type 1 ryanodine receptors to the endoplasmic reticulum.

Gargi Meur; Andrew K. T. Parker; Fanni Gergely; Colin W. Taylor

Most ryanodine receptors and their relatives, inositol 1,4,5-trisphosphate receptors, are expressed in the sarcoplasmic or endoplasmic reticulum (ER), where they mediate Ca2+ release. We expressed fragments of ryanodine receptor type 1 (RyR1) in COS cells alone or fused to intercellular adhesion molecule-1 (ICAM-1), each tagged with yellow fluorescent protein, and used confocal imaging and glycoprotein analysis to identify the determinants of ER targeting and retention. Single transmembrane domains (TMD) of RyR1 taken from the first (TMD1–TMD2) or last (TMD5–TMD6) pair were expressed in the ER membrane. TMD3–TMD4 was expressed in the outer mitochondrial membrane. The TMD outer pairs (TMD1–TMD2 and TMD5–TMD6) retained ICAM-1, a plasma membrane-targeted protein, within the ER membrane. TMD1 alone provided a strong ER retention signal and TMD6 a weaker signal, but the other single TMD were unable to retain ICAM-1 in the ER. We conclude that TMD1 provides the first and sufficient signal for ER targeting of RyR1. The TMD outer pairs include redundant ER retention signals, with TMD1 providing the strongest signal.


Journal of Biological Chemistry | 2015

The Zinc Transporter Slc30a8/ZnT8 Is Required in a Subpopulation of Pancreatic α-Cells for Hypoglycemia-induced Glucagon Secretion

Antonia Solomou; Gargi Meur; Elisa A. Bellomo; David J. Hodson; Alejandra Tomas; Stéphanie Migrenne Li; Erwann Philippe; Pedro Luis Herrera; Christophe Magnan; Guy A. Rutter

Background: The role of the type 2 diabetes risk gene SLC30A8, encoding ZnT8, in the control of glucagon secretion is not clearly established. Results: Inactivation of ZnT8 in a subset of α-cells leads to increased glucagon secretion in vivo and in vitro. Conclusion: ZnT8 is involved in normal glucagon release. Significance: SLC30A8 diabetes risk alleles may influence glucagon secretion. SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet β- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP+: glucagon+ cells from KO mice, revealed recombination in ∼30% of α-cells, of which ∼50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn2+ levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca2+ increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca2+-independent mechanisms.


Journal of Biological Chemistry | 2011

Human Mutation within Per-Arnt-Sim (PAS) Domain-containing Protein Kinase (PASK) Causes Basal Insulin Hypersecretion

Francesca Semplici; Martine Vaxillaire; Sarah Fogarty; Meriem Semache; Amélie Bonnefond; Ghislaine Fontés; Julien Philippe; Gargi Meur; Frédérique Diraison; Richard B. Sessions; Jared Rutter; Vincent Poitout; Philippe Froguel; Guy A. Rutter

Background: The glucose sensor PAS kinase (PASK) plays a fundamental role in pancreatic islet physiology. Results: A single amino acid substitution in the human PASK kinase domain stimulates enzyme activity and increases insulin secretion at low glucose. Conclusion: A rare, naturally occurring mutation in PASK modulates insulin release in man. Significance: We provide direct genetic evidence for a role for PASK in controlling insulin secretion in man. PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mm) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.


Journal of Biological Chemistry | 2009

Functional Ryanodine Receptors in the Plasma Membrane of RINm5F Pancreatic β-Cells

Christian Rosker; Gargi Meur; Emily J. A. Taylor; Colin W. Taylor

Ryanodine receptors (RyR) are Ca2+ channels that mediate Ca2+ release from intracellular stores in response to diverse intracellular signals. In RINm5F insulinoma cells, caffeine, and 4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca2+ entry that was independent of store-operated Ca2+ entry, and blocked by prior incubation with a concentration of ryanodine that inactivates RyR. Patch-clamp recording identified small numbers of large-conductance (γK = 169 pS) cation channels that were activated by caffeine, 4CmC or low concentrations of ryanodine. Similar channels were detected in rat pancreatic β-cells. In RINm5F cells, the channels were blocked by cytosolic, but not extracellular, ruthenium red. Subcellular fractionation showed that type 3 IP3 receptors (IP3R3) were expressed predominantly in endoplasmic reticulum, whereas RyR2 were present also in plasma membrane fractions. Using RNAi selectively to reduce expression of RyR1, RyR2, or IP3R3, we showed that RyR2 mediates both the Ca2+ entry and the plasma membrane currents evoked by agonists of RyR. We conclude that small numbers of RyR2 are selectively expressed in the plasma membrane of RINm5F pancreatic β-cells, where they mediate Ca2+ entry.

Collaboration


Dive into the Gargi Meur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge