Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Araldi is active.

Publication


Featured researches published by Elisa Araldi.


Nature | 2011

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia

Apostolos Klinakis; Camille Lobry; Omar Abdel-Wahab; Philmo Oh; Hiroshi Haeno; Silvia Buonamici; Inge Vande Walle; Severine Cathelin; Thomas Trimarchi; Elisa Araldi; Cynthia Liu; Sherif Ibrahim; M. Beran; Jiri Zavadil; Argiris Efstratiadis; Tom Taghon; Franziska Michor; Ross L. Levine; Iannis Aifantis

Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit γ-secretase (γSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1

Aránzazu Chamorro-Jorganes; Elisa Araldi; Luiz O. F. Penalva; Devraj Sandhu; Carlos Fernández-Hernando; Yajaira Suárez

Objective—MicroRNAs play key roles in modulating a variety of cellular processes by posttranscriptional regulation of their target genes. Vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR2), and fibroblast growth factor receptor-1 (FGFR1) were identified by bioinformatic approaches and subsequently validated as targets of microRNA (miR)-16 and miR-424 in endothelial cells (ECs). Methods and Results—Mimetics of these microRNAs reduced VEGF, VEGFR2, and FGFR1 expression, whereas specific antagonists enhanced their expression. Expression of mature miR-16 and miR-424 was upregulated on VEGF or basic fibroblast growth factor (bFGF) treatment. This upregulation was accompanied by a parallel increase in primary transcript (pri-miR)-16-1 and pri-miR-16-2 but not in pri-miR-424 levels, indicating a VEGF/bFGF-dependent transcriptional and posttranscriptional regulation of miR-16 and miR-424, respectively. Reduced expression of VEGFR2 and FGFR1 by miR-16 or miR-424 overexpression regulated VEGF and bFGF signaling through these receptors, thereby affecting the activity of downstream components of the pathways. Functionally, miR-16 or miR-424 overexpression reduced proliferation, migration, and cord formation of ECs in vitro, and lentiviral overexpression of miR-16 reduced the ability of ECs to form blood vessels in vivo. Conclusion—We conclude that these miRNAs fine-tune the expression of selected endothelial angiogenic mediators in response to these growth factors. Altogether, these findings suggest that miR-16 and miR-424 play important roles in regulating cell-intrinsic angiogenic activity of ECs.


Cell | 2012

The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO

Erinn B. Rankin; Colleen Wu; Richa Khatri; Tremika L.S. Wilson; Rebecca Andersen; Elisa Araldi; Andrew L. Rankin; Jenny Yuan; Calvin J. Kuo; Ernestina Schipani; Amato J. Giaccia

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Journal of Experimental Medicine | 2013

Notch pathway activation targets AML-initiating cell homeostasis and differentiation

Camille Lobry; Panagiotis Ntziachristos; Delphine Ndiaye-Lobry; Philmo Oh; Luisa Cimmino; Nan Zhu; Elisa Araldi; Wenhuo Hu; Jacquelyn Freund; Omar Abdel-Wahab; Sherif Ibrahim; Scott A. Armstrong; Ross L. Levine; Christopher Y. Park; Iannis Aifantis

Notch behaves as a tumor suppressor in AML, and Notch activation induces cell cycle arrest, differentiation, and apoptosis of AML-initiating cells.


Bone | 2010

Hypoxia, HIFs and bone development

Elisa Araldi; Ernestina Schipani

Oxygen is not only an obviously important substrate, but it is also a regulatory signal that controls expression of a specific genetic program. Crucial mediator of the adaptive response of cells to hypoxia is the family of Hypoxia-Inducible Transcription Factors (HIFs).The fetal growth plate, which is an avascular structure of mesenchymal origin, has a unique out-in gradient of oxygenation. HIF-1alpha is necessary for chondrogenesis in vivo by controlling a complex homeostatic response that allows chondrocytes to survive and differentiate in a hypoxic environment. Moreover, HIFs are also essential in osteogenesis and joint development. This brief Perspective summarizes the critical role of HIFs in endochondral bone development.


Circulation Research | 2013

Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144Novelty and Significance

Cristina M. Ramírez; Noemi Rotllan; Alexander V. Vlassov; Alberto Dávalos; Mu Li; Leigh Goedeke; Juan F. Aranda; Daniel Cirera-Salinas; Elisa Araldi; Alessandro G. Salerno; Amarylis Wanschel; Jiri Zavadil; Antonio Castrillo; Jungsu Kim; Yajaira Suárez; Carlos Fernández-Hernando

Rationale: Foam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate–binding cassette (ABC) transporters, including adenosine triphosphate–binding cassette transporter A1 (ABCA1) and adenosine triphosphate–binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters. Objective: We aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists. Methods and Results: To map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver. Conclusions: miR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease.


PLOS ONE | 2013

MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice

Ashley M. Miller; Derek S. Gilchrist; J S Nijjar; Elisa Araldi; Cristina M. Ramírez; Christopher A. Lavery; Carlos Fernández-Hernando; Iain B. McInnes; Mariola Kurowska-Stolarska

Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes.


Nature Medicine | 2015

MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.

Leigh Goedeke; Noemi Rotllan; Alberto Canfrán-Duque; Juan F. Aranda; Cristina M. Ramírez; Elisa Araldi; Chin Sheng Lin; Norma N. Anderson; Alexandre Wagschal; Rafael de Cabo; Jay D. Horton; Miguel A. Lasunción; Anders M. Näär; Yajaira Suárez; Carlos Fernández-Hernando

The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL-cholesterol (LDL-C). While the transcriptional regulation of LDLR is well-characterized, the post-transcriptional mechanisms which govern LDLR expression are just beginning to emerge. Here, we developed a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen, we characterize miR-148a as a negative regulator of LDLR expression and activity, and define a novel SREBP1-mediated pathway by which miR-148a regulates LDL-C uptake. Importantly, inhibition of miR-148a increases hepatic LDLR expression and decreases plasma LDL-C in vivo. We also provide evidence that miR-148a regulates hepatic ABCA1 expression and circulating HDL-C levels. Collectively, these studies uncover miR-148a as an important regulator of hepatic LDL-C clearance through direct regulation of LDLR expression, and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate the elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease.


Journal of Bone and Mineral Research | 2012

VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival

Christa Maes; Elisa Araldi; Katharina Haigh; Richa Khatri; Riet Van Looveren; Amato J. Giaccia; Jody J. Haigh; Geert Carmeliet; Ernestina Schipani

Fetal growth plate cartilage is nonvascularized, and chondrocytes largely develop in hypoxic conditions. We previously found that mice lacking the hypoxia‐inducible transcription factor HIF‐1α in cartilage show massive death of centrally located, hypoxic chondrocytes. A similar phenotype was observed in mice with genetic ablation of either all or specifically the diffusible isoforms of vascular endothelial growth factor (VEGF), a prime angiogenic target of HIF‐1α. Here, we assessed whether VEGF is a critical downstream component of the HIF‐1α–dependent survival pathway in chondrocytes. We used a genetic approach to conditionally overexpress VEGF164 in chondrocytes lacking HIF‐1α, evaluating potential rescuing effects. The effectiveness of the strategy was validated by showing that transgenic expression of VEGF164 in Col2‐Cre;VEGFf/f mice stimulated angiogenesis in the perichondrium, fully corrected the excessive hypoxia of VEGF‐deficient chondrocytes, and completely prevented chondrocyte death. Yet, similarly crossed double‐mutant embryos lacking HIF‐1α and overexpressing VEGF164 in the growth plate cartilage still displayed a central cell death phenotype, albeit slightly delayed and less severe compared with mice exclusively lacking HIF‐1α. Transgenic VEGF164 induced massive angiogenesis in the perichondrium, yet this only partially relieved the aberrant hypoxia present in HIF‐1α–deficient cartilage and thereby likely inflicted only a partial rescue effect. In fact, excessive hypoxia and failure to upregulate phosphoglycerate‐kinase 1 (PGK1), a key enzyme of anaerobic glycolytic metabolism, were among the earliest manifestations of HIF‐1α deficiency in cartilaginous bone templates, and reduced PGK1 expression was irrespective of transgenic VEGF164. These findings suggest that HIF‐1α activates VEGF‐independent cell‐autonomous mechanisms to sustain oxygen levels in the challenged avascular cartilage by reducing oxygen consumption. Hence, regulation of the metabolic pathways by HIF‐1α and VEGF‐dependent regulation of angiogenesis coordinately act to maintain physiological cartilage oxygenation. We conclude that VEGF and HIF‐1α are critical preservers of chondrocyte survival by ensuring an adequate balance between availability and handling of oxygen in developing growth cartilage.


Circulation Research | 2016

VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis

Aránzazu Chamorro-Jorganes; Monica Y. Lee; Elisa Araldi; Shira Landskroner-Eiger; Marta Fernández-Fuertes; Mahnaz Sahraei; Maria Quiles del Rey; Coen van Solingen; Jun Yu; Carlos Fernández-Hernando; William C. Sessa; Yajaira Suárez

Supplemental Digital Content is available in the text.

Collaboration


Dive into the Elisa Araldi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge