Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Arnone is active.

Publication


Featured researches published by Elisa Arnone.


Water Resources Management | 2015

Modifications in Water Resources Availability Under Climate Changes: A Case Study in a Sicilian Basin

Lorena Liuzzo; Leonardo Noto; Elisa Arnone; Domenico Caracciolo; Goffredo La Loggia

Climate variability due to the greenhouse effect has important implications on hydrological processes and water resources systems. Indeed, water availability, quality and streamflow are very sensitive to changes in temperature and precipitation regimes whose effects have to be fully considered in current water management and planning. International literature proposes several models, attempting to assess accurately the available water resources under stationary and changing climatic conditions at different spatial and temporal scales. In order to assess the potential impacts of climate change on surface and groundwater resources water availability in a Southern area of Italy, a conceptual hydrologic model, the TOPDM, was applied at daily scale to simulate the hydrological processes in the Belice river basin, located in Sicily and which feeds an artificial lake. The analysis of climatic forcings trend provided the parameters needed in order to generate synthetic climate forcing series through the use of the AWE-GEN, an hourly weather generator, able to reproduce the characteristics of hydro-climatic variables and their statistical properties. . The hydrological model was used to estimate the basin water balance components and the surface and groundwater availability, at annual and monthly scale, in a no trend scenario, representing the current climate conditions, and in three different groups of scenarios, in which a decrease of precipitation, an increase of temperature, and a combination of these effect were reproduced. The application of TOPDM to the test basin provided some important conclusions about the implications of climate change in the Southern part of Italy. Results showed that runoff and evapotranspiration reflect variations in precipitation and in temperature; in particular the negative trend in precipitation determines a decrease in surface and groundwater resources, and this effect is intensified in the scenarios that include an increase in potential evapotraspiration as well. The consequences of changes on water supply system were also analyzed through a simple balance evaluation of the lake water reservoir, in order to assess the possible impacts on the resource managements. Results indicated an exacerbation of the water resources stresses, in which water scarcity is already an important issue for water resource management. The analysis provides useful information about the quantification of the potential effects of climate change in the area of study, in order to develop new strategies to deal with these changes.


Water Resources Research | 2016

Modeling the hydrological and mechanical effect of roots on shallow landslides

Elisa Arnone; Domenico Caracciolo; Leonardo Noto; Federico Preti; Rafael L. Bras

This study proposes a new methodology for estimating the additional shear strength (or cohesion) exerted by vegetation roots on slope stability analysis within a coupled hydrological-stability model. The mechanical root cohesion is estimated within a Fiber Bundle Model framework that allows for the evaluation of the root strength as a function of stress-strain relationships of populations of fibers. The use of such model requires the knowledge of the root architecture. A branching topology model based on Leonardos rule is developed, providing an estimation of the amount of roots and the distribution of diameters with depth. The proposed methodology has been implemented into an existing distributed hydrological-stability model able to simulate the dynamics of factor of safety as a function of soil moisture dynamics. The model also accounts for the hydrological effects of vegetation, which reduces soil water content via root water uptake, thus increasing the stability. The entire methodology has been tested in a synthetic hillslope with two configurations of vegetation type, i.e. trees and shrubs, which have been compared to a configuration without vegetation. The vegetation has been characterized using roots data of two mediterranean plant species. The results demonstrate the capabilities of the topological model in accurately reproducing the observed root structure of the analyzed species. For the environmental setting modelled, the effects of root uptake might be more significant than the mechanical reinforcement; the additional resistance depends strictly on the vegetation root depth. Finally, for the simulated climatic environment, landslides are seasonal, in agreement with past observations. This article is protected by copyright. All rights reserved.


Environmental Modelling and Software | 2016

Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping

Elisa Arnone; Antonio Francipane; Antonino Scarbaci; Claudio Puglisi; Leonardo Noto

The choice of the proper resolution in landslide susceptibility mapping is a worth considering issue. If, on the one hand, a coarse spatial resolution may describe the terrain morphologic properties with low accuracy, on the other hand, at very fine resolutions, some of the DEM-derived morphometric factors may hold an excess of details. Moreover, the landslide inventory maps are represented throughout geospatial vector data structure, therefore a conversion procedure vector-to-raster is required.This work investigates the effects of raster resolution on the susceptibility mapping in conjunction with the use of different algorithms of vector-raster conversion. The Artificial Neural Network technique is used to carry out such analyses on two Sicilian basins. Seven resolutions and three conversion algorithms are investigated. Results indicate that the finest resolutions do not lead to the highest model performances, whereas the algorithm of conversion data may significantly affect the ANN training procedure at coarse resolutions. Landslide susceptibility maps using ANN.Effects of raster resolution and vector-to-raster conversion algorithms.The finest resolutions do not necessarily lead to the highest model performances.The algorithm of conversion data may significantly affect the ANN training.


Water Resources Research | 2016

Impact of hydrologically driven hillslope erosion and landslide occurrence on soil organic carbon dynamics in tropical watersheds

Yannis G. Dialynas; Satish Bastola; Rafael L. Bras; Erika Marin-Spiotta; Whendee L. Silver; Elisa Arnone; Leonardo Noto

The dynamics of soil organic carbon (SOC) in tropical forests play an important role in the global carbon (C) cycle. Past attempts to quantify the net C exchange with the atmosphere in regional and global budgets do not systematically account for dynamic feedbacks among linked hydrological, geomorphological, and biogeochemical processes, which control the fate of SOC. Here we quantify effects of geomorphic perturbations on SOC oxidation and accumulation in two adjacent wet tropical forest watersheds underlain by contrasting lithology (volcaniclastic rock and quartz diorite) in the Luquillo Critical Zone Observatory. This study uses the spatially-explicit and physically-based model of SOC dynamics tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation) and measurements of SOC profiles and oxidation rates. Our results suggest that hillslope erosion at the two watersheds may drive C sequestration or CO2 release to the atmosphere, depending on the forest type and land use. The net erosion-induced C exchange with the atmosphere was controlled by the spatial distribution of forest types. The two watersheds were characterized by significant erosion and dynamic replacement of upland SOC stocks. Results suggest that the landscape underlain by volcaniclastic rock has reached a state close to geomorphic equilibrium, and the landscape underlain by quartz diorite is characterized by greater rates of denudation. These findings highlight the importance of the spatially-explicit and physical representation of C erosion driven by local variation in lithological and geomorphological characteristics and in forest cover. This article is protected by copyright. All rights reserved.


Hydrological Processes | 2018

The role of urban growth, climate change, and their interplay in altering runoff extremes

Elisa Arnone; Dario Pumo; Antonio Francipane; Goffredo La Loggia; Leonardo Noto

Hydrological Processes. 2018;32:1755–1770. Abstract Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.


Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV | 2012

An integrated information system for the acquisition, management and sharing of environmental data aimed to decision making

Goffredo La Loggia; Elisa Arnone; Giuseppe Ciraolo; Antonino Maltese; Leonardo Noto; Umberto Pernice

This paper reports the first results of the Project SESAMO - SistEma informativo integrato per l’acquisizione, geStione e condivisione di dati AMbientali per il supportO alle decisioni (Integrated Information System for the acquisition, management and sharing of environmental data aimed to decision making). The main aim of the project is to design and develop an integrated environmental information platform able to provide monitoring services for decision support, integrating data from different environmental monitoring systems (including WSN). This ICT platform, based on a service-oriented architecture (SOA), will be developed to coordinate a wide variety of data acquisition systems, based on heterogeneous technologies and communication protocols, providing different sort of environmental monitoring services. The implementation and validation of the SESAMO platform and its services will involve three specific environmental domains: 1) Urban water losses; 2) Early warning system for rainfall-induced landslides; 3) Precision irrigation planning. Services in the first domain are enabled by a low cost sensors network collecting and transmitting data, in order to allow the pipeline network managers to analyze pressure, velocity and discharge data for reducing water losses in an urban contest. This paper outlines the SESAMO functional and technological structure and then gives a concise description of the service design and development process for the second and third domain. Services in the second domain are enabled by a prototypal early warning system able to identify in near-real time high-risk zones of rainfall-induced landslides. Services in the third domain are aimed to optimize irrigation planning of vineyards depending on plant water stress.


Convegno Nazionale di Idraulica e Costruzioni Idrauliche | 2016

Effetti di urbanizzazione e cambiamenti climatici sui deflussi a scala di bacino

Dario Pumo; Antonio Francipane; Elisa Arnone; Domenico Caracciolo; Francesco Viola; Leonardo Noto; G. La Loggia

PIETRO; Passadore, Giulia; Garbin, Silvia; B., Matticchio; F., Visentin; I., Brunet; R., Lago; F., Facco; Botter, Gianluca; Carniello, Luca. ELETTRONICO. (2016), pp. 1119-1122. ((Intervento presentato al convegno Convegno Nazionale di Idraulica e Costruzioni Idrauliche tenutosi a Bologna nel Settembre 2016. Original Citation: Un sistema modellistico integrato per la previsione in tempo reale delle piene del Muson dei Sassi (Pd)La XXXV edizione del Convegno Nazionale di Idraulica e Costruzioni Idrauliche (IDRA16), co-organizzata dal Gruppo Italiano di Idraulica (GII) e dal Dipartimento di Ingegneria Civile, Chimica, Ambientale, e dei Materiali (DICAM) dell’Alma Mater Studiorum - Universita di Bologna, si e svolta a Bologna dal 14 al 16 settembre 2016. Il Convegno Nazionale e tornato pertanto ad affacciarsi all’ombra del “Nettuno”, dopo l’edizione del 1982 (XVIII edizione). Il titolo della XXXV edizione, “Ambiente, Risorse, Energia: le sfide dell’Ingegneria delle acque in un mondo che cambia”, sottolinea l’importanza e la complessita delle tematiche che rivestono la sfera dello studio e del governo delle risorse idriche. Le sempre piu profonde interconnessioni tra risorse idriche, sviluppo economico e benessere sociale, infatti, spronano sia l’Accademia che l’intera comunita tecnico-scientifica nazionale ed internazionale all’identificazione ed alla messa in atto di strategie di gestione innovative ed ottimali: sfide percepite quanto mai necessarie in un contesto ambientale in continua evoluzione, come quello in cui viviamo. La XXXV edizione del Convegno di Idraulica e Costruzioni Idrauliche, pertanto, si e posta come punto d’incontro della comunita tecnico-scientifica italiana per la discussione a tutto tondo di tali problematiche, offrendo un programma scientifico particolarmente ricco e articolato, che ha coperto tutti gli ambiti riconducibili all’Ingegneria delle Acque. L’apertura dei lavori del Convegno si e svolta nella storica cornice della Chiesa di Santa Cristina, uno dei luoghi piu caratteristici e belli della citta ed oggi luogo privilegiato per l’ascolto della musica classica, mentre le attivita di presentazione e discussione scientifica si sono svolte principalmente presso la sede della Scuola di Ingegneria e Architettura dell’Universita di Bologna sita in Via Terracini. Il presente volume digitale ad accesso libero (licenza Creative Commons 4.0) raccoglie le memorie brevi pervenute al Comitato Scientifico di IDRA16 ed accettate per la presentazione al convegno a valle di un processo di revisione tra pari. Il volume articola dette memorie in sette macro-tematiche, che costituiscono i capitoli del volume stesso: I. meccanica dei fluidi; II. ambiente marittimo e costiero; III. criteri, metodi e modelli per l’analisi dei processi idrologici e la gestione delle acque; IV. gestione e tutela dei corpi idrici e degli ecosistemi; V. valutazione e mitigazione del rischio idrologico e idraulico; VI. dinamiche acqua-societa: sviluppo sostenibile e gestione del territorio; VII. monitoraggio, open-data e software libero. Ciascuna macro-tematica raggruppa piu sessioni specialistiche autonome sviluppatesi in parallelo durante le giornate del Convegno, i cui titoli vengono richiamati all’interno del presente volume. La vastita e la diversita delle tematiche affrontate, che ben rappresentano la complessita delle numerose sfide dell’Ingegneria delle Acque, appaiono evidenti dalla consultazione dell’insieme di memorie brevi presentate. La convinta partecipazione della Comunita Scientifica Italiana e dimostrata dalle oltre 350 memorie brevi, distribuite in maniera pressoche uniforme tra le sette macro-tematiche di riferimento. Dette memorie sono sommari estesi di lunghezza variabile redatti in lingua italiana, o inglese. In particolare, la possibilita di stesura in inglese e stata concessa con l’auspicio di portare la visibilita del lavoro presentato ad un livello sovranazionale, grazie alla pubblicazione open access del volume degli Atti del Convegno. Il volume si divide in tre parti: la parte iniziale e dedicata alla presentazione del volume ed all’indice generale dei contributi divisi per macro-tematiche; la parte centrale raccoglie le memorie brevi; la terza parte riporta l’indice analitico degli Autori, che chiude il volume.


Geomorphology | 2011

Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale

Elisa Arnone; Leonardo Noto; Chiara Lepore; Rafael L. Bras


Hydrology and Earth System Sciences | 2013

Rainfall statistics changes in Sicily

Elisa Arnone; Dario Pumo; Francesco Viola; Lv Noto; G. La Loggia


Catena | 2012

tRIBS-Erosion: A parsimonious physically-based model for studying catchment hydro-geomorphic response

Antonio Francipane; Valeriy Y. Ivanov; Leonardo Noto; Erkan Istanbulluoglu; Elisa Arnone; Rafael L. Bras

Collaboration


Dive into the Elisa Arnone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael L. Bras

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yannis G. Dialynas

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge