Elisa Balboa
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Balboa.
Biochimica et Biophysica Acta | 2015
Graciela Arguello; Elisa Balboa; Marco Arrese; Silvana Zanlungo
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of hepatic histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. NAFLD hallmark is the excessive hepatic accumulation of neutral lipids that result from an imbalance between lipid availability and lipid removal. Recent data suggest that disturbed hepatic cholesterol homeostasis and liver free cholesterol (FC) accumulation are relevant to the pathogenesis of NAFLD/NASH. Hepatic FC accumulation in NAFLD results from alterations in intracellular cholesterol transport and from unbalanced cellular cholesterol homeostasis characterized by activation of cholesterol biosynthetic pathways, increased cholesterol de-esterification and attenuation of cholesterol export and bile acid synthesis pathways. FC accumulation leads to liver injury through the activation of intracellular signaling pathways in Kupffer cells (KCs), Stellate cells (HSCs) and hepatocytes. The activation of KCs and HSCs promotes inflammation and fibrogenesis. In addition, FC accumulation in liver mitochondria induces mitochondrial dysfunction, which results in increasing production of reactive oxygen species, and triggers the unfolded protein response in the endoplasmic reticulum (ER) causing ER stress and apoptosis. These events create a vicious circle that contributes to the maintenance of steatosis and promotes ongoing hepatocyte death and liver damage, which in turn may translate into disease progression. In the present review we summarize the current knowledge on dysregulated cholesterol homeostasis in NAFLD and examine the cellular mechanisms of hepatic FC toxicity and its contribution to ongoing liver injury in this disease. The therapeutic implications of this knowledge are also discussed.
Oxidative Medicine and Cellular Longevity | 2012
Mary Carmen Vázquez; Elisa Balboa; Alejandra R. Alvarez; Silvana Zanlungo
Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
Redox biology | 2017
Sandra Torres; Nuria Matías; Anna Baulies; S. Núñez; Cristina Alarcón-Vila; Laura Martínez; Natalia Nuño; Anna Fernández; Joan Caballería; Thierry Levade; Alba Gonzalez-Franquesa; Pablo M. Garcia-Roves; Elisa Balboa; Silvana Zanlungo; Gemma Fabriàs; Josefina Casas; Carlos Enrich; Carmen García-Ruiz; José C. Fernández-Checa
Niemann Pick type C (NPC) disease is a progressive lysosomal storage disorder caused by mutations in genes encoding NPC1/NPC2 proteins, characterized by neurological defects, hepatosplenomegaly and premature death. While the primary biochemical feature of NPC disease is the intracellular accumulation of cholesterol and gangliosides, predominantly in endolysosomes, mitochondrial cholesterol accumulation has also been reported. As accumulation of cholesterol in mitochondria is known to impair the transport of GSH into mitochondria, resulting in mitochondrial GSH (mGSH) depletion, we investigated the impact of mGSH recovery in NPC disease. We show that GSH ethyl ester (GSH-EE), but not N-acetylcysteine (NAC), restored the mGSH pool in liver and brain of Npc1-/- mice and in fibroblasts from NPC patients, while both GSH-EE and NAC increased total GSH levels. GSH-EE but not NAC increased the median survival and maximal life span of Npc1-/- mice. Moreover, intraperitoneal therapy with GSH-EE protected against oxidative stress and oxidant-induced cell death, restored calbindin levels in cerebellar Purkinje cells and reversed locomotor impairment in Npc1-/- mice. High-resolution respirometry analyses revealed that GSH-EE improved oxidative phosphorylation, coupled respiration and maximal electron transfer in cerebellum of Npc1-/- mice. Lipidomic analyses showed that GSH-EE treatment had not effect in the profile of most sphingolipids in liver and brain, except for some particular species in brain of Npc1-/- mice. These findings indicate that the specific replenishment of mGSH may be a potential promising therapy for NPC disease, worth exploring alone or in combination with other options.
Molecular and Cellular Endocrinology | 2010
Dolores Busso; M.J. Oñate-Alvarado; Elisa Balboa; Silvana Zanlungo; Ricardo D. Moreno
Niemann Pick C2 (NPC2) and NPC1 proteins function cooperatively to catalyze cholesterol efflux from lysosomes. NPC1 is expressed in ovarian cells and female NPC1 mice are infertile. This work addressed for the first time the localization and function of murine NPC2 protein in the ovary. Ovarian NPC2 was localized to theca and luteal cells, which use cholesterol as a substrate to produce estradiol and progesterone, respectively. NPC2 deficient (NPC2-/-) females had abnormal estrous cycles and were infertile, with normal folliculogenesis until the antral stage, but a complete absence of corpora lutea and many zonae pellucidae remnants, indicative of anovulation. Serum estradiol was reduced and ovarian cholesterol was accumulated in NPC2-/- mice, suggesting a defect in cholesterol export from intracellular stores. After superovulation, NPC2-/- mice ovulated less eggs than their wild type littermates, showed ovaries with less corpora lutea and numerous unruptured follicles, and lower serum progesterone concentration. Together, these results suggest that NPC2 participates in the traffic of ovarian cholesterol required to provide the substrate for steroid synthesis and support follicle maturation, ovulation and luteinization.
Redox biology | 2017
Elisa Balboa; Juan Castro; María-José Pinochet; Gonzalo I. Cancino; Nuria Matías; Pablo J. Sáez; Alexis Martínez; Alejandra R. Alvarez; Carmen García-Ruiz; José C. Fernández-Checa; Silvana Zanlungo
MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH) levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.
Liver International | 2010
María Gabriela Morales; Ludwig Amigo; Elisa Balboa; Mariana Acuña; Juan Castro; Héctor Molina; Juan Francisco Miquel; Flavio Nervi; Attilio Rigotti; Silvana Zanlungo
Background/aims: Receptor‐mediated endocytosis is a critical cellular mechanism for the uptake of lipoprotein cholesterol in the liver. Because Niemann‐Pick C1 (NPC1) protein is a key component for the intracellular distribution of cholesterol originating from lipoprotein endocytosis, it may play an important role in controlling biliary cholesterol secretion and gallstone formation induced by a lithogenic diet.
Nutrients | 2014
Tamara Marín; Pablo S. Contreras; Juan Castro; David Chamorro; Elisa Balboa; Mònica Bosch-Morató; Francisco Muñoz; Alejandra R. Alvarez; Silvana Zanlungo
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients.
Frontiers in Physiology | 2017
Sandra Torres; Elisa Balboa; Silvana Zanlungo; Carlos Enrich; Carmen García-Ruiz; José C. Fernández-Checa
Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS) of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.
Reproduction, Fertility and Development | 2013
Dolores Busso; Marı́a José Oñate-Alvarado; Elisa Balboa; Juan Castro; Carlos Lizama; Gabriela Morales; Susana Vargas; Steffen Härtel; Ricardo D. Moreno; Silvana Zanlungo
The cholesterol content of the sperm membrane is regulated during both maturation in the epididymis and capacitation in the female tract, two processes required for the spermatozoa to acquire their fertilising ability. Because Niemann-Pick disease, type C2 (NPC2) protein is one of the most abundant components of the epididymal fluid and contains a functional cholesterol-binding site that can transfer cholesterol between membranes, it has been suggested for years that NPC2 could be involved in the regulation of cholesterol levels in spermatozoa during epididymal maturation. In the present study, western blot and immunohistochemistry analyses demonstrated significant levels of NPC2 in the mouse epididymal epithelium. Epididymal spermatozoa obtained from NPC2(-/-) mice were morphologically normal and had normal motility parameters, but had a reduced cholesterol content compared with that of wild-type (WT) spermatozoa, as determined by both biochemical and by flow cytometry analyses. These results suggest that NPC2 could be involved in regulating cholesterol levels in spermatozoa during epididymal maturation. To understand the relevance of epididymal NPC2 for sperm function, the ability of spermatozoa to undergo events influenced by epididymal maturation, such as capacitation and fertilisation, were compared between WT and NPC2(-/-) mice. Capacitated NPC2(-/-) spermatozoa exhibited defective tyrosine phosphorylation patterns and a reduced ability to fertilise cumulus-oocyte complexes compared with WT spermatozoa, supporting the relevance of mouse epididymal NPC2 for male fertility.
Biochimica et Biophysica Acta | 2016
Luis A. Cea; Elisa Balboa; Carlos Puebla; Aníbal A. Vargas; Bruno A. Cisterna; Rosalba Escamilla; Tomás Regueira; Juan C. Sáez
Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker.