Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Belluzzi is active.

Publication


Featured researches published by Elisa Belluzzi.


PLOS ONE | 2012

Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers

Laura Civiero; Renée Vancraenenbroeck; Elisa Belluzzi; Alexandra Beilina; Evy Lobbestael; Lauran Reyniers; Fangye Gao; Ivan Mičetić; Marc De Maeyer; Luigi Bubacco; Veerle Baekelandt; Mark R. Cookson; Elisa Greggio; Jean-Marc Taymans

Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinsons disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.


Frontiers in Molecular Neuroscience | 2014

LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex

Maria Daniela Cirnaru; Antonella Marte; Elisa Belluzzi; Isabella Russo; Martina Gabrielli; Francesco Longo; Ludovico Arcuri; Luca Murru; Luigi Bubacco; Michela Matteoli; Ernesto Fedele; Carlo Sala; Maria Passafaro; Michele Morari; Elisa Greggio; Franco Onofri; Giovanni Piccoli

Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinsons disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex.


Molecular Neurodegeneration | 2016

LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate.

Elisa Belluzzi; Adriano Gonnelli; Maria Daniela Cirnaru; Antonella Marte; Nicoletta Plotegher; Isabella Russo; Laura Civiero; Susanna Cogo; Maria Perèz Carrion; Cinzia Franchin; Giorgio Arrigoni; Mariano Beltramini; Luigi Bubacco; Franco Onofri; Giovanni Piccoli; Elisa Greggio

BackgroundLrrk2, a gene linked to Parkinson’s disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins.ResultsHere, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity.ConclusionsGiven that the most common Parkinson’s disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.


PLOS ONE | 2012

Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson's disease.

Elisa Belluzzi; Marco Bisaglia; Elisabetta Lazzarini; Leandro C. Tabares; Mariano Beltramini; Luigi Bubacco

Mitochondrial dysfunction and oxidative stress are considered central in dopaminergic neurodegeneration in Parkinson’s disease (PD). Oxidative stress occurs when the endogenous antioxidant systems are overcome by the generation of reactive oxygen species (ROS). A plausible source of oxidative stress, which could account for the selective degeneration of dopaminergic neurons, is the redox chemistry of dopamine (DA) and leads to the formation of ROS and reactive dopamine-quinones (DAQs). Superoxide dismutase 2 (SOD2) is a mitochondrial enzyme that converts superoxide radicals to molecular oxygen and hydrogen peroxide, providing a first line of defense against ROS. We investigated the possible interplay between DA and SOD2 in the pathogenesis of PD using enzymatic essays, site-specific mutagenesis, and optical and high-field-cw-EPR spectroscopies. Using radioactive DA, we demonstrated that SOD2 is a target of DAQs. Exposure to micromolar DAQ concentrations induces a loss of up to 50% of SOD2 enzymatic activity in a dose-dependent manner, which is correlated to the concomitant formation of protein aggregates, while the coordination geometry of the active site appears unaffected by DAQ modifications. Our findings support a model in which DAQ-mediated SOD2 inactivation increases mitochondrial ROS production, suggesting a link between oxidative stress and mitochondrial dysfunction.


Biochemical Society Transactions | 2012

Presynaptic dysfunction in Parkinson's disease: a focus on LRRK2.

Elisa Belluzzi; Elisa Greggio; Giovanni Piccoli

PD (Parkinsons disease) is a common neurodegenerative disease clinically characterized by bradykinesia, rigidity and resting tremor. Recent studies have proposed that synaptic dysfunction, implicated in numerous studies of animal models of PD, might be a key factor in PD. The molecular defects that lead to PD progression might be hidden at the presynaptic neuron: in fact accumulating evidence has shown that the majority of the genes linked to PD play a critical role at the presynaptic site. In the present paper, we focus on the presynaptic function of LRRK2 (leucine-rich repeat kinase 2), a protein that mutated represents the main genetic cause of familial PD described to date. Neurotransmission relies on proper presynaptic vesicle trafficking; defects in this process, variation in dopamine flow and alteration of presynaptic plasticity have been reported in several animal models of LRRK2 mutations. Furthermore, impaired dopamine turnover has been described in presymptomatic LRRK2 PD patients. Thus, given the pathological events occurring at the synapses of PD patients, the presynaptic site may represent a promising target for early diagnostic therapeutic intervention.


Journal of Neurochemistry | 2014

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways

Lauran Reyniers; Maria Grazia Del Giudice; Laura Civiero; Elisa Belluzzi; Evy Lobbestael; Alexandra Beilina; Giorgio Arrigoni; Rita Derua; Etienne Waelkens; Yan Li; Claudia Crosio; Ciro Iaccarino; Mark R. Cookson; Veerle Baekelandt; Elisa Greggio; Jean-Marc Taymans

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinsons disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1‐ and LRRK2‐specific cellular processes by identifying their distinct interacting proteins. A protein microarray‐based interaction screen was performed with recombinant 3xFlag‐LRRK1 and 3xFlag‐LRRK2 and, in parallel, co‐immunoprecipitation followed by mass spectrometry was performed from SH‐SY5Y neuroblastoma cell lines stably expressing 3xFlag‐LRRK1 or 3xFlag‐LRRK2. We identified a set of LRRK1‐ and LRRK2‐specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF‐R) as a LRRK1‐specific interactor, while 14‐3‐3 proteins were LRRK2‐specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14‐3‐3 consensus binding motifs. To assess the functional relevance of these interactions, SH‐SY5Y‐LRRK1 and ‐LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14‐3‐3 binding, or with EGF, an EGF‐R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins.


Journal of Neurochemistry | 2015

Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain

Laura Civiero; Maria Daniela Cirnaru; Alexandra Beilina; Umberto Rodella; Isabella Russo; Elisa Belluzzi; Evy Lobbestael; Lauran Reyniers; Geshanthi Hondhamuni; Patrick A. Lewis; Chris Van den Haute; Veerle Baekelandt; Rina Bandopadhyay; Luigi Bubacco; Giovanni Piccoli; Mark R. Cookson; Jean-Marc Taymans; Elisa Greggio

Leucine‐rich repeat kinase 2 (LRRK2) is a causative gene for Parkinsons disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock‐out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2‐mediated pathophysiology.


Human Molecular Genetics | 2014

The chaperone–like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity

Nicoletta Plotegher; Dhruv Kumar; Isabella Tessari; Marco Brucale; Francesca Munari; Laura Tosatto; Elisa Belluzzi; Elisa Greggio; Marco Bisaglia; Stefano Capaldi; Daniel Aioanei; Stefano Mammi; Hugo L. Monaco; Brunorì Samo; Luigi Bubacco

Familial and idiopathic Parkinsons disease (PD) is associated with the abnormal neuronal accumulation of α-synuclein (aS) leading to β-sheet-rich aggregates called Lewy Bodies (LBs). Moreover, single point mutation in aS gene and gene multiplication lead to autosomal dominant forms of PD. A connection between PD and the 14-3-3 chaperone-like proteins was recently proposed, based on the fact that some of the 14-3-3 isoforms can interact with genetic PD-associated proteins such as parkin, LRRK2 and aS and were found as components of LBs in human PD. In particular, a direct interaction between 14-3-3η and aS was reported when probed by co-immunoprecipitation from cell models, from parkinsonian brains and by surface plasmon resonance in vitro. However, the mechanisms through which 14-3-3η and aS interact in PD brains remain unclear. Herein, we show that while 14-3-3η is unable to bind monomeric aS, it interacts with aS oligomers which occur during the early stages of aS aggregation. This interaction diverts the aggregation process even when 14-3-3η is present in sub-stoichiometric amounts relative to aS. When aS level is overwhelmingly higher than that of 14-3-3η, the fibrillation process becomes a sequestration mechanism for 14-3-3η, undermining all processes governed by this protein. Using a panel of complementary techniques, we single out the stage of aggregation at which the aS/14-3-3η interaction occurs, characterize the products of the resulting processes, and show how the processes elucidated in vitro are relevant in cell models. Our findings constitute a first step in elucidating the molecular mechanism of aS/14-3-3η interaction and in understanding the critical aggregation step at which 14-3-3η has the potential to rescue aS-induced cellular toxicity.


Journal of Cellular Physiology | 2017

Systemic and Local Adipose Tissue in Knee Osteoarthritis: OBESITY AND FAT PAD IN KNEE OSTEOARTHRITIS

Elisa Belluzzi; Hamza El Hadi; Marnie Granzotto; Marco Rossato; Roberta Ramonda; Veronica Macchi; Raffaele De Caro; Roberto Vettor; Marta Favero

Osteoarthritis is a common chronic joint disorder affecting older people. The knee is the major joint affected. The symptoms of osteoarthritis include limited range of motion, joint swelling, and pain causing disability. There are no disease modifying drugs available, and treatments are mainly focused on pain management. Total knee replacement performed at the end stage of the disease is considered the only cure available. It has been found that obese people have an increased risk to develop not only knee but also hand osteoarthritis. This supports the concept that adipose tissue might be related to osteoarthritis not only through overloading. As matter of fact, obesity induces a low grade systemic inflammatory state characterized by the production and secretion of several adipocytokines that may have a role in osteoarthritis development. Furthermore, hypertension, impaired glucose, and lipid metabolism, which are comorbidities associated with obesity, have been shown to alter the joint tissue homeostasis. Moreover, infrapatellar fat pad in the knee has been demonstrated to be a local source of adipocytokines and potentially contribute to osteoarthritis pathogenesis. Here, we discuss the role of systemic and local adipose tissue in knee osteoarthritis. J. Cell. Physiol. 232: 1971–1978, 2017.


Rheumatology | 2017

Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study

Marta Favero; Hamza El-Hadi; Elisa Belluzzi; Marnie Granzotto; Andrea Porzionato; Gloria Sarasin; Anna Rambaldo; Claudio Iacobellis; Augusto Cigolotti; Chiara Giulia Fontanella; Arturo N. Natali; Roberta Ramonda; Pietro Ruggieri; Raffaele De Caro; Roberto Vettor; Marco Rossato; Veronica Macchi

Objective The infrapatellar fat pad (IFP) is considered a local producer of adipocytokines, suggesting a potential role in OA. The objective of this study was to evaluate the histopathological and molecular characteristics of OA IFPs compared with controls. Methods The histopathological characteristics of IFPs were evaluated in patients undergoing total knee replacements and in control patients (without OA), considering the following parameters: presence of inflammatory cells, vascularization, adipose lobules dimension and thickness of the interlobular septa. Immunohistochemistry was performed to evaluate VEGF, monocyte chemotactic protein 1 (MCP-1) and IL-6 proteins. Quantitative real time PCR was performed to evaluate the expression levels of adipocytokines in the OA IFPs. Results OA IFPs showed an increase in inflammatory infiltration, vascularization and thickness of the interlobular septa compared with controls. VEGF, MCP-1 and IL-6 proteins were higher in OA IFPs compared with in controls. Inflammatory infiltration, hyperplasia, vascularization and fibrosis were increased in OA IFP synovial membranes compared with in those of controls. VEGF protein levels were associated with an increased number of vessels in the OA IFPs, while MCP-1 and IL-6 protein levels were associated with higher grades of inflammatory infiltration. Leptin levels were positively correlated with adiponectin and MCP-1expression, while adiponectin positively correlated with peroxisome proliferative activated receptor gamma, MCP-1 and IFP vascularity. MCP-1 showed a positive correlation with peroxisome proliferative activated receptor gamma. IFP lobules dimensions were positively correlated with IL-6 expression and negatively with thickness of interlobular septa. VEGF mRNA levels were positively correlated with increased synovial vascularity. Conclusions OA IFPs and synovial membranes are more inflamed, vascularized and fibrous compared with those of control patients (without OA).

Collaboration


Dive into the Elisa Belluzzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Beilina

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Veerle Baekelandt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge