Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luigi Bubacco is active.

Publication


Featured researches published by Luigi Bubacco.


PLOS Biology | 2008

Conformational Equilibria in Monomeric α-Synuclein at the Single-Molecule Level

Massimo Sandal; Francesco Valle; Isabella Tessari; Stefano Mammi; Elisabetta Bergantino; Francesco Musiani; Marco Brucale; Luigi Bubacco; Bruno Samorì

Human α-Synuclein (αSyn) is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of αSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between αSyns unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy–based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant αSyn. The conformational heterogeneity of monomeric αSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and “β-like” structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the “β-like” structures significantly increased in different conditions promoting the aggregation of αSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric αSyn conformers, positively correlated with conditions known to promote the formation of aggregates. A new tool is thus made available to test directly the influence of mutations and pharmacological strategies on the conformational equilibrium of monomeric αSyn.


Journal of Biological Chemistry | 2007

Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine ANALYSIS OF THE INTERACTIONS WITH α-SYNUCLEIN

Marco Bisaglia; Stefano Mammi; Luigi Bubacco

Oxidative stress appears to be directly involved in the pathogenesis of several neurodegenerative disorders, including Alzheimer and Parkinson diseases. Nigral dopaminergic neurons are particularly exposed to oxidative stress because a pathological accumulation of cytosolic dopamine gives rise to various toxic molecules, including free radicals and reactive quinones. These latter species can react with proteins preventing them from exerting their physiological functions. Among the possible targets of quinones, α-synuclein is of primary interest because of its direct involvement in dopamine metabolism. Contrary to the neurotoxic processes, neuromelanin synthesis seems to play a protective role by its ability to sequester a variety of potentially damaging substances. In this study, we carried out a kinetic and structural analysis of the early oxidation products of dopamine. Specifically, considering the potential high toxicity of aminochrome for both cells and mitochondria, we focused our attention on its rearrangement to 5,6-dihydroxyindole. After the spectroscopic characterization of the products derived from the oxidation of dopamine, the structural information obtained was used to analyze the reactivity of quinones toward α-synuclein. Our results suggest that indole-5,6-quinone, rather than dopamine-o-quinone or aminochrome, is the reactive species. We propose that the observed reactivity could represent a general reaction pathway whenever cysteinyl residues are absent in proteins or if they are sterically protected.


PLOS ONE | 2013

Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies.

Gaia Codolo; Nicoletta Plotegher; Tommaso Pozzobon; Marco Brucale; Isabella Tessari; Luigi Bubacco; Marina de Bernard

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. It is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Another feature is represented by the formation in these cells of inclusions called Lewy bodies (LB), principally constituted by fibrillar α-synuclein (αSyn). This protein is considered a key element in the aetiology of a group of neurodegenerative disorders termed synucleinopathies, which include PD, but the cellular and molecular mechanisms involved are not completely clear. It is established that the inflammatory process plays a crucial role in the pathogenesis and/or progression of PD; moreover, it is known that aggregated αSyn, released by neurons, activates microglia cells to produce pro-inflammatory mediators, such as IL-1β. IL-1β is one of the strongest pro-inflammatory cytokines; it is produced as an inactive mediator, and its maturation and activation requires inflammasome activation. In particular, the NLRP3 inflammasome is activated by a wide variety of stimuli, among which are crystallized and particulate material. In this work, we investigated the possibility that IL-1β production, induced by fibrillar αSyn, is involved the inflammasome activation. We demonstrated the competence of monomeric and fibrillar αSyn to induce synthesis of IL-1β, through TLR2 interaction; we found that the secretion of the mature cytokine was a peculiarity of the fibrillated protein. Moreover, we observed that the secretion of IL-1β involves NLRP3 inflammasome activation. The latter relies on the phagocytosis of fibrillar αSyn, followed by increased ROS production and cathepsin B release into the cytosol. Taken together, our data support the notion that fibrillar αSyn, likely released by neuronal degeneration, acts as an endogenous trigger inducing a strong inflammatory response in PD.


The FASEB Journal | 2009

Structural insights on physiological functions and pathological effects of α-synuclein

Marco Bisaglia; Stefano Mammi; Luigi Bubacco

α‐Synuclein is an intrinsically unfolded protein that can adopt a partially helical structure when it interacts with different lipid membranes. Its pathological relevance is linked to its involvement in several neurodegenerative disorders including Parkinsons disease, Alzheimers disease, and dementia with Lewy bodies. Typical of such ailments is the presence of a‐synuclein aggregates in a β‐structure that can be soluble or precipitate. This review focuses on the structural knowledge acquired in recent years on the various conformations accessible to α‐synuclein and to its pathologically relevant mutants. Furthermore, the role of the different variables of the chemical environments that govern the equilibria among the accessible conformations is also reviewed. The hypotheses that rationalize the relevance of the individual structural features and conformations for the physiological function of the protein or for its purported pathological role are described and compared.—Bisaglia, M., Mammi, S., Bubacco, L. Structural insights on physiological functions and pathological effects of a‐synuclein. FASEB J. 23, 329‐340 (2009)


Journal of Neuroinflammation | 2014

LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease?

Isabella Russo; Luigi Bubacco; Elisa Greggio

It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.


Journal of the American Chemical Society | 2008

Broken Helix in Vesicle and Micelle-Bound α-Synuclein: Insights from Site-Directed Spin Labeling-EPR Experiments and MD Simulations

Marco Bortolus; Fabio Tombolato; Isabella Tessari; Marco Bisaglia; Stefano Mammi; Luigi Bubacco; Alberta Ferrarini; Anna Lisa Maniero

The region 35-43 of human alpha-Synuclein bound to small unilamellar lipid vesicles and to sodium dodecyl sulfate micelles has been investigated by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The distance distributions obtained from spectral fitting have been analyzed on the basis of the allowed rotamers of the spin-label side-chain. Very similar results have been obtained in the two environments: an unbroken helical structure of the investigated region can be ruled out. The distance distributions are rather compatible with the presence of conformational disorder, in agreement with previous findings for micelle-bound alpha-Synuclein. The propensity for helix breaking is confirmed by molecular dynamics simulations.


Human Molecular Genetics | 2013

GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2

Alice Biosa; Alzbeta Trancikova; Laura Civiero; Liliane Glauser; Luigi Bubacco; Elisa Greggio; Darren J. Moore

Mutations in the LRRK2 gene cause autosomal dominant Parkinsons disease. LRRK2 encodes a multi-domain protein containing a Ras-of-complex (Roc) GTPase domain, a C-terminal of Roc domain and a protein kinase domain. LRRK2 can function as a GTPase and protein kinase, although the interplay between these two enzymatic domains is poorly understood. Although guanine nucleotide binding is critically required for the kinase activity of LRRK2, the contribution of GTP hydrolysis is not known. In general, the molecular determinants regulating GTPase activity and how the GTPase domain contributes to the properties of LRRK2 remain to be clarified. Here, we identify a number of synthetic missense mutations in the GTPase domain that functionally modulate GTP binding and GTP hydrolysis and we employ these mutants to comprehensively explore the contribution of GTPase activity to the kinase activity and cellular phenotypes of LRRK2. Our data demonstrate that guanine nucleotide binding and, to a lesser extent, GTP hydrolysis are required for maintaining normal kinase activity and both activities contribute to the GTP-dependent activation of LRRK2 kinase activity. Guanine nucleotide binding but not GTP hydrolysis regulates the dimerization, structure and stability of LRRK2. Furthermore, GTP hydrolysis regulates the LRRK2-dependent inhibition of neurite outgrowth in primary cortical neurons but is unable to robustly modulate the effects of the familial G2019S mutation. Our study elucidates the role of GTPase activity in regulating kinase activity and cellular phenotypes of LRRK2 and has important implications for the validation of the GTPase domain as a molecular target for attenuating LRRK2-mediated neurodegeneration.


Journal of Neurochemistry | 2005

Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease

Elisa Greggio; Elisabetta Bergantino; Donald B. Carter; Rili Ahmad; Gertrude-Emilia Costin; Vincent J. Hearing; Jordi Clarimón; Andrew Singleton; Johanna Eerola; Olli Hellström; Pentti J. Tienari; David W. Miller; Alexandra Beilina; Luigi Bubacco; Mark R. Cookson

Tyrosinase is a key enzyme in the synthesis of melanin in skin and hair and has also been proposed to contribute to the formation of neuromelanin (NM). The presence of NM, which is biochemically similar to melanin in peripheral tissues, identifies groups of neurons susceptible in Parkinsons disease (PD). Whether tyrosinase is beneficial or detrimental to neurons is unclear; whilst the enzyme activity of tyrosinase generates dopamine‐quinones and other oxidizing compounds, NM may form a sink for such radical species. In the present study, we demonstrated that tyrosinase is expressed at low levels in the human brain. We found that mRNA, protein and enzyme activity are all present but at barely detectable levels. In cell culture systems, expression of tyrosinase increases neuronal susceptibility to oxidizing conditions, including dopamine itself. We related these in vitro observations to the human disease by assessing whether there was any genetic association between the gene encoding tyrosinase and idiopathic PD. We found neither genotypic or haplotypic association with three polymorphic markers of the gene. This argues against a strong genetic association between tyrosinase and PD, although the observed contribution to cellular toxicity suggests that a biochemical association is likely.


Biochemical and Biophysical Research Communications | 2010

Dopamine quinones interact with α-synuclein to form unstructured adducts

Marco Bisaglia; Laura Tosatto; Francesca Munari; Isabella Tessari; Patrizia Polverino de Laureto; Stefano Mammi; Luigi Bubacco

alpha-Synuclein (alphasyn) fibril formation is considered a central event in the pathogenesis of Parkinsons disease (PD). In recent years, it has been proposed that prefibrillar annular oligomeric beta-sheet-rich species, called protofibrils, rather than fibrils themselves, may be the neurotoxic species. The oxidation products of dopamine (DAQ) can inhibit alphasyn fibril formation supporting the idea that DAQ might stabilize alphasyn protofibrils. In the present work, through different biochemical and biophysical techniques, we isolated and structurally characterized alphasyn/DAQ adducts. Contrary to protofibrils, we demonstrated that alphasyn/DAQ adducts retain an unfolded conformation. We then investigated the nature of the modifications induced on alphasyn by DAQ. Our results indicate that only a small fraction of alphasyn interacts with DAQ in a covalent way, so that non-covalent interaction appears to be the major modification induced by DAQ on alphasyn.


PLOS ONE | 2012

Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers

Laura Civiero; Renée Vancraenenbroeck; Elisa Belluzzi; Alexandra Beilina; Evy Lobbestael; Lauran Reyniers; Fangye Gao; Ivan Mičetić; Marc De Maeyer; Luigi Bubacco; Veerle Baekelandt; Mark R. Cookson; Elisa Greggio; Jean-Marc Taymans

Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinsons disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.

Collaboration


Dive into the Luigi Bubacco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge