Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Canzoneri is active.

Publication


Featured researches published by Elisa Canzoneri.


Current Biology | 2013

Social modulation of peripersonal space boundaries.

Chiara Teneggi; Elisa Canzoneri; Giuseppe di Pellegrino; Andrea Serino

The space around the body, i.e., peripersonal space (PPS), is conceived as a multisensory-motor interface between body and environment. PPS is represented by frontoparietal neurons integrating tactile, visual, and auditory stimuli occurring near the body. PPS is plastic, because it extends by using a tool to reach far objects. Although interactions with others occur within PPS, little is known about how social environment modulates it. Here, we show that presence and interaction with others shape PPS representation. Participants performed a tactile detection task on their face while concurrent task-irrelevant sounds approached toward or receded from their face. Because a sound affects touch when occurring within PPS, we calculated the critical distance where sounds speeded up tactile reaction time as a proxy of PPS boundaries. Experiment 1 shows that PPS boundaries shrink when subjects face another individual, as compared to a mannequin, placed in far space. Experiment 2 and 3 show that, after playing an economic game with another person, PPS boundaries between self and other merge, but only if the other behaved cooperatively. These results reveal that PPS representation is sensitive to social modulation, showing a link between low-level sensorimotor processing and high-level social cognition.


PLOS ONE | 2012

Dynamic sounds capture the boundaries of peripersonal space representation in humans.

Elisa Canzoneri; Elisa Magosso; Andrea Serino

Background We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition. Methodology/Principal Findings Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding. Conclusion/Significance This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.


Journal of Cognitive Neuroscience | 2011

Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: An rtms study

Andrea Serino; Elisa Canzoneri; Alessio Avenanti

A network of brain regions including the ventral premotor cortex (vPMc) and the posterior parietal cortex (PPc) is consistently recruited during processing of multisensory stimuli within peripersonal space (PPS). However, to date, information on the causal role of these fronto-parietal areas in multisensory PPS representation is lacking. Using low-frequency repetitive TMS (rTMS; 1 Hz), we induced transient virtual lesions to the left vPMc, PPc, and visual cortex (V1, control site) and tested whether rTMS affected audio–tactile interaction in the PPS around the hand. Subjects performed a timed response task to a tactile stimulus on their right (contralateral to rTMS) hand while concurrent task-irrelevant sounds were presented either close to the hand or 1 m far from the hand. When no rTMS was delivered, a sound close to the hand reduced RT-to-tactile targets as compared with when a far sound was presented. This space-dependent, auditory modulation of tactile perception was specific to a hand-centered reference frame. Such a specific form of multisensory interaction near the hand can be taken as a behavioral hallmark of PPS representation. Crucially, virtual lesions to vPMc and PPc, but not to V1, eliminated the speeding effect due to near sounds, showing a disruption of audio–tactile interactions around the hand. These findings indicate that multisensory interaction around the hand depends on the functions of vPMc and PPc, thus pointing to the necessity of this human fronto-parietal network in multisensory representation of PPS.


Experimental Brain Research | 2013

Tool-use reshapes the boundaries of body and peripersonal space representations

Elisa Canzoneri; Silvia Ubaldi; Valentina Rastelli; Alessandra Finisguerra; Michela Bassolino; Andrea Serino

Interaction with objects in the environment typically requires integrating information concerning the object location with the position and size of body parts. The former information is coded in a multisensory representation of the space around the body, a representation of peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR). Using a tool to act upon relatively distant objects extends PPS representation. This effect has been interpreted as indicating that tools can be incorporated into BR. However, empirical data showing that tool-use simultaneously affects PPS representation and BR are lacking. To study this issue, we assessed the extent of PPS representation by means of an audio-tactile interaction task and BR by means of a tactile distance perception task and a body-landmarks localisation task, before and after using a 1-m-long tool to reach far objects. Tool-use extended the representation of PPS along the tool axis and concurrently shaped BR; after tool-use, subjects perceived their forearm narrower and longer compared to before tool-use, a shape more similar to the one of the tool. Tool-use was necessary to induce these effects, since a pointing task did not affect PPS and BR. These results show that a brief training with a tool induces plastic changes both to the perceived dimensions of the body part acting upon the tool and to the space around it, suggesting a strong overlap between peripersonal space and body representation.


Scientific Reports | 2013

Amputation and prosthesis implantation shape body and peripersonal space representations

Elisa Canzoneri; Marilena Marzolla; Amedeo Amoresano; Gennaro Verni; Andrea Serino

Little is known about whether and how multimodal representations of the body (BRs) and of the space around the body (Peripersonal Space, PPS) adapt to amputation and prosthesis implantation. In order to investigate this issue, we tested BR in a group of upper limb amputees by means of a tactile distance perception task and PPS by means of an audio-tactile interaction task. Subjects performed the tasks with stimulation either on the healthy limb or the stump of the amputated limb, while wearing or not wearing their prosthesis. When patients performed the tasks on the amputated limb, without the prosthesis, the perception of arm length shrank, with a concurrent shift of PPS boundaries towards the stump. Conversely, wearing the prosthesis increased the perceived length of the stump and extended the PPS boundaries so as to include the prosthetic hand, such that the prosthesis partially replaced the missing limb.


Scientific Reports | 2016

Body part-centered and full body-centered peripersonal space representations.

Andrea Serino; Jean Paul Noel; Giulia Galli; Elisa Canzoneri; Patrick Marmaroli; Hervé Lissek; Olaf Blanke

Dedicated neural systems represent the space surrounding the body, termed Peripersonal space (PPS), by integrating visual or auditory stimuli occurring near the body with somatosensory information. As a behavioral proxy to PPS, we measured participants’ reaction time to tactile stimulation while task-irrelevant auditory or visual stimuli were presented at different distances from their body. In 7 experiments we delineated the critical distance at which auditory or visual stimuli boosted tactile processing on the hand, face, and trunk as a proxy of the PPS extension. Three main findings were obtained. First, the size of PPS varied according to the stimulated body part, being progressively bigger for the hand, then face, and largest for the trunk. Second, while approaching stimuli always modulated tactile processing in a space-dependent manner, receding stimuli did so only for the hand. Finally, the extension of PPS around the hand and the face varied according to their relative positioning and stimuli congruency, whereas the trunk PPS was constant. These results suggest that at least three body-part specific PPS representations exist, differing in extension and directional tuning. These distinct PPS representations, however, are not fully independent from each other, but referenced to the common reference frame of the trunk.


Frontiers in Psychology | 2015

The wheelchair as a full-body tool extending the peripersonal space

Giulia A. Galli; Jean Paul Noel; Elisa Canzoneri; Olaf Blanke; Andrea Serino

Dedicated multisensory mechanisms in the brain represent peripersonal space (PPS), a limited portion of space immediately surrounding the body. Previous studies have illustrated the malleability of PPS representation through hand-object interaction, showing that tool use extends the limits of the hand-centered PPS. In the present study we investigated the effects of a special tool, the wheelchair, in extending the action possibilities of the whole body. We used a behavioral measure to quantify the extension of the PPS around the body before and after Active (Experiment 1) and Passive (Experiment 2) training with a wheelchair and when participants were blindfolded (Experiment 3). Results suggest that a wheelchair-mediated passive exploration of far space extended PPS representation. This effect was specifically related to the possibility of receiving information from the environment through vision, since no extension effect was found when participants were blindfolded. Surprisingly, the active motor training did not induce any modification in PPS representation, probably because the wheelchair maneuver was demanding for non-expert users and thus they may have prioritized processing of information from close to the wheelchair rather than at far spatial locations. Our results suggest that plasticity in PPS representation after tool use seems not to strictly depend on active use of the tool itself, but is triggered by simultaneous processing of information from the body and the space where the body acts in the environment, which is more extended in the case of wheelchair use. These results contribute to our understanding of the mechanisms underlying body–environment interaction for developing and improving applications of assistive technological devices in different clinical populations.


Frontiers in Behavioral Neuroscience | 2015

Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approach

Andrea Serino; Elisa Canzoneri; Marilena Marzolla; Giuseppe di Pellegrino; Elisa Magosso

Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.


Neuropsychologia | 2015

Dissociating effect of upper limb non-use and overuse on space and body representations

Michela Bassolino; Alessandra Finisguerra; Elisa Canzoneri; Andrea Serino; Thierry Pozzo

Accurate and updated representations of the space where the body acts, i.e. the peripersonal space (PPS), and the location and dimension of body parts (body representation, BR) are essential to perform actions. Because both PPS and BR are involved in motor execution and display the same plastic proprieties after the use of a tool to reach far objects, it has been suggested that they overlap in a unique representation of the body in a space devoted to action. Here we determined whether manipulating actions in space, without modifying body metrics, i.e. through immobilization, induces a dissociation of the plastic properties of PPS and BR. In 39 healthy subjects we evaluated PPS and BR for the non-used right limb and the overused left limb before and after 10 h of right arm immobilization. We observed that non-use reduces PPS representation around the immobilized arm, without affecting the metric representation (i.e. perceived length) of that limb. In contrast, overuse modulates the metric representation of the free arm, leaving PPS unchanged around that limb. These results suggest that the plasticity in PPS and BR depends on different mechanisms; while PPS representation is shaped as a function of the dimension of the acting space, metric characteristics of BR are forged on a complex interplay between visual and sensorimotor information related to the body. This behavioral dissociation between PPS and BR defines a new scenario for the role of action in shaping space and body representations.


Neuropsychologia | 2015

Moving sounds within the peripersonal space modulate the motor system

Alessandra Finisguerra; Elisa Canzoneri; Andrea Serino; Thierry Pozzo; Michela Bassolino

Interactions between ourselves and the external world are mediated by a multisensory representation of the space surrounding the body, i.e. the peripersonal space (PPS). In particular, a special interplay is observed among tactile stimuli delivered on a body part, e.g. the hand, and visual or auditory external inputs presented close, but not far, from the same body part, e.g. within hand PPS. This coding of multisensory stimuli as a function of their distance from the hand has a role in upper limb actions. However, it remains unclear whether PPS representation affects the motor system only when stimuli occur specifically at the hand location or when they move within a continuous portion of space where the hand can potentially act. Here, in order to study these two alternatively hypotheses, we assessed the critical distance at which moving sounds have a direct effect on hand corticospinal excitability by using Transcranial Magnetic Stimulation (TMS). Specifically, TMS single pulses were delivered when a sound source was perceived at six different positions in space: from very close to subjects hand (15 cm) to far away (90 cm). Moreover, sound direction was manipulated to test if stimuli approaching and receding from the hand might have the same relevance for the motor system. MEPs amplitude was enhanced when sounds were delivered within a limited distance from the hand (around 60 cm) as compared to when the sounds were beyond this space. This effect captures the spatial boundaries within which PPS representation modulates hand cortico-motor excitability. This spatially-dependent modulation of corticospinal activity was not further affected by the sound direction. Such findings support a strict link between the multisensory representation of the space around the body and the motor representation of potential approaching or defensive acts within that space.

Collaboration


Dive into the Elisa Canzoneri's collaboration.

Top Co-Authors

Avatar

Andrea Serino

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Olaf Blanke

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alessandra Finisguerra

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Bassolino

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Bruno Herbelin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Pozzo

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge