Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Ciraolo is active.

Publication


Featured researches published by Elisa Ciraolo.


Science Signaling | 2008

Phosphoinositide 3-kinase p110beta activity : key role in metabolism and mammary gland cancer but not development

Elisa Ciraolo; Manuela Iezzi; Romina Marone; Stefano Marengo; Claudia Curcio; Carlotta Costa; Ornella Azzolino; Cristiano Gonella; Cristina Rubinetto; Haiyan Wu; Walter Dastrù; Erica Martin; Lorenzo Silengo; Fiorella Altruda; Emilia Turco; Letizia Lanzetti; Piero Musiani; Thomas Rückle; Christian Rommel; Jonathan M. Backer; Guido Forni; Matthias P. Wymann; Emilio Hirsch

The phosphoinositide 3-kinase p110β subunit has noncatalytic functions; its catalytic activity is pertinent to both diabetes and cancer. Unveiling p110β Phosphatidylinositide 3-kinase (PI3K) signaling has been implicated in the response to insulin and various growth factors. However, the specific role of the β isoform of the PI3K catalytic subunit (p110β) has been unclear. Analysis of mouse mutants carrying a catalytically inactive form of p110β reveals that it possesses noncatalytic as well as catalytic functions. Moreover, its catalytic activity is involved in sustaining the response to insulin signaling and in mediating forms of breast cancer associated with oncogenic epidermal growth factor signaling. The phosphoinositide 3-kinase (PI3K) pathway crucially controls metabolism and cell growth. Although different PI3K catalytic subunits are known to play distinct roles, the specific in vivo function of p110β (the product of the PIK3CB gene) is not clear. Here, we show that mouse mutants expressing a catalytically inactive PIK3CBK805R mutant survived to adulthood but showed growth retardation and developed mild insulin resistance with age. Pharmacological and genetic analyses of p110β function revealed that p110β catalytic activity is required for PI3K signaling downstream of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors as well as to sustain long-term insulin signaling. In addition, PIK3CBK805R mice were protected in a model of ERBB2-driven tumor development. These findings indicate an unexpected role for p110β catalytic activity in diabetes and cancer, opening potential avenues for therapeutic intervention.


Journal of Endocrinology | 2007

Phosphoinositide 3-kinases as a common platform for multi-hormone signaling

Emilio Hirsch; Carlotta Costa; Elisa Ciraolo

In multicellular organisms, concerted actions of different tissues are regulated inside single cells by signal transduction mechanisms that, subsequently to hormones sensing, trigger intracellular responses. In recent years, increasing evidence indicates phosphoinositide 3-kinases (PI3K) as crucial signal transducing elements that regulate communication across the plasma membrane. PI3K generate lipid secondary messengers that trigger a plethora of intracellular responses ranging from metabolic regulation to cell proliferation, survival, and migration. The growing number of hormones that relay signals by activating PI3K suggests not only multiple roles of these enzymes in the regulation of different physiological responses but also a way by which common reactions can be stimulated by different inputs. This review will thus focus on the different pathways that converge on PI3K activation, with particular attention to the paradigmatic PI3K involvement in insulin signaling.


Developmental Cell | 2014

PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function

Irene Franco; Federico Gulluni; Carlo Cosimo Campa; Carlotta Costa; Jean Piero Margaria; Elisa Ciraolo; Miriam Martini; Daniel Monteyne; Elisa De Luca; Giulia Germena; York Posor; Tania Maffucci; Stefano Marengo; Volker Haucke; Marco Falasca; David Perez-Morga; Alessandra Boletta; Giorgio R. Merlo; Emilio Hirsch

Summary Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Pharmacology & Therapeutics | 2008

Taming the PI3K team to hold inflammation and cancer at bay.

Emilio Hirsch; Elisa Ciraolo; Alessandra Ghigo; Carlotta Costa

Recent progress in understanding the molecular mechanisms of receptor signal transduction is continuously highlighting new unforeseen potential drug targets for yet unmet therapeutic needs. While the large number of different cell surface receptors challenge the concept of antagonists development, the finding of signal transduction platforms common to multiple receptor families has boosted the development of new therapeutic approaches. The identification of the role of phosphoinositide 3-kinase family members downstream receptors as directors of multiple cellular responses ranging from cell proliferation and survival to immunity and cardiovascular control, is an example of successful drug target validation studies. This review will focus on these findings and on the ongoing efforts to tame this family of enzymes to beat inflammation and cancer.


Mediators of Inflammation | 2015

Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

Maria Galluzzo; Elisa Ciraolo; Monica Lucattelli; Eriola Hoxha; Martina Ulrich; Carlo Cosimo Campa; Giuseppe Lungarella; Gerd Döring; Zhe Zhou-Suckow; Marcus A. Mall; Emilio Hirsch; Virginia De Rose

Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF). Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg) were backcrossed with PI3Kγ-deficient (PI3Kγ KO) mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF). Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240) on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3Kγ KO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.


Frontiers in Oncology | 2013

Targeting PI3K in Cancer: Any Good News?

Miriam Martini; Elisa Ciraolo; Federico Gulluni; Emilio Hirsch

The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it’s one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug candidates include PI3K inhibitors, both pan- and isoform-specific inhibitors, AKT, mTOR, and dual PI3K/mTOR inhibitors. As novel compounds progress into clinical trials, it’s becoming urgent to identify and select patient population that most likely benefit from PI3K inhibition. In this review we will discuss individual PIK3CA mutations as predictors of sensitivity and resistance to targeted therapies, leading to use of novel PI3K/mTOR/AKT inhibitors to a more “personalized” treatment.


Trends in Biochemical Sciences | 2009

Twice upon a time: PI3K's secret double life exposed

Emilio Hirsch; Laura Braccini; Elisa Ciraolo; Fulvio Morello; Alessia Perino

Class I phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes involved in signal transduction triggered by growth factors and G-protein-coupled receptors. The catalytic function of PI3Ks is well known to promote a wide variety of biological processes, including proliferation, survival and migration, but a new layer of complexity in the function of PI3Ks has recently emerged, indicating that these proteins function not only as kinases but also as scaffold proteins. Knockout mice that lack PI3K protein expression show a different phenotype from knock-in mice expressing PI3K mutants that have lost their kinase activity, providing evidence for this novel role of PI3Ks. We will discuss such findings, highlighting the crucial scaffold function of PI3Kgamma in cAMP homeostasis and PI3Kbeta in receptor recycling.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase γ

Carlotta Costa; Laura Barberis; Chiara Ambrogio; Andrea D. Manazza; Enrico Patrucco; Ornella Azzolino; Paul O. Neilsen; Elisa Ciraolo; Fiorella Altruda; Glenn D. Prestwich; Roberto Chiarle; Matthias P. Wymann; Anne J. Ridley; Emilio Hirsch

Polarization of chemotaxing cells depends on positive feedback loops that amplify shallow gradients of chemoattractants into sharp intracellular responses. In particular, reciprocal activation of phosphatidylinositol 3-kinases (PI3Ks) and small GTPases like Rac leads to accumulation, at the leading edge, of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP3). Mice carrying a “knockin” allele of the G protein-coupled receptor (GPCR)-activated PI3Kγ, encoding a plasma membrane-targeted protein appeared normal, but their leukocytes showed GPCR-uncoupled PIP3 accumulation. In vivo, the mutation increased proliferation and decreased apoptosis, leading to leukocytosis and delayed resolution of inflammation in wound healing. Mutant leukocytes showed significantly impaired directional cell migration in response to chemoattractants. Stimulated mutant macrophages did not polarize PIP3 and showed a shortened Rac activation because of enhanced PI3K-dependent activation of RacGAPs. Together with the finding that chemoattractants stimulate a PIP3-dependent GAP activation in wild-type macrophages, these results identify a molecular mechanism involving PI3K- and RacGAP-dependent negative control of Rac that limits and fine-tunes feedback loops promoting cell polarization and directional motility.


Current Medicinal Chemistry | 2011

Present and future of PI3K pathway inhibition in cancer: perspectives and limitations.

Elisa Ciraolo; Fulvio Morello; Emilio Hirsch

Phosphoinositide 3-kinases (PI3Ks) control key signaling pathways in cancer cells, leading to cell proliferation, survival, motility and angiogenesis. In several human cancers, activation of PI3Ks results from gain-of-function or over-expression of PI3Ks and/or hyperactivity of up- or downstream players in the pathway. As inhibition of PI3Ks and downstream targets such as mammalian target of rapamycin (mTOR) has been shown to reduce tumor growth in vitro and in preclinical models, several small molecule inhibitors of PI3Ks are currently undergoing clinical trial as novel agents in cancer therapy. These drugs include inhibitors targeting all class I PI3Ks (α, β, γ, δ isoforms), compounds blocking selective PI3K isoforms and dual inhibitors active on both PI3Ks and mTOR. Herein, we summarize the pharmacology and preliminary clinical data of the main PI3K inhibitors undergoing clinical trial. We will also review the preclinical studies documenting the major effects of systemic PI3K inhibition on non-cancer tissues, which have shed light on potential side effects, caveats and limitations for PI3K blockade in patients.


Molecular Biology of the Cell | 2010

Essential Role of the p110β Subunit of Phosphoinositide 3-OH Kinase in Male Fertility

Elisa Ciraolo; Fulvio Morello; Robin M. Hobbs; Frieder Wolf; Romina Marone; Manuela Iezzi; Xiaoyun Lu; Giulio Mengozzi; Fiorella Altruda; Giovanni Sorba; Kaomei Guan; Pier Paolo Pandolfi; Matthias P. Wymann; Emilio Hirsch

In the absence of p110β function, spermatogenesis is dramatically disturbed because of a progressive reduction of differentiating spermatogones. Genetically modified mice and pharmacological inhibition of p110β confirmed this enzyme as the main PI3K isoform activated downstream of c-Kit.

Collaboration


Dive into the Elisa Ciraolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gian Cesare Tron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge