Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam Martini is active.

Publication


Featured researches published by Miriam Martini.


Journal of Clinical Oncology | 2008

Wild-Type BRAF Is Required for Response to Panitumumab or Cetuximab in Metastatic Colorectal Cancer

Federica Di Nicolantonio; Miriam Martini; Francesca Molinari; Andrea Sartore-Bianchi; Sabrina Arena; Piercarlo Saletti; Sara De Dosso; Luca Mazzucchelli; Milo Frattini; Salvatore Siena; Alberto Bardelli

PURPOSE Cetuximab or panitumumab are effective in 10% to 20% unselected metastatic colorectal cancer (CRC) patients. KRAS mutations account for approximately 30% to 40% patients who are not responsive. The serine-threonine kinase BRAF is the principal effector of KRAS. We hypothesized that, in KRAS wild-type patients, BRAF mutations could have a predictive/prognostic value. PATIENTS AND METHODS We retrospectively analyzed objective tumor responses, time to progression, overall survival (OS), and the mutational status of KRAS and BRAF in 113 tumors from cetuximab- or panitumumab-treated metastatic CRC patients. The effect of the BRAF V600E mutation on cetuximab or panitumumab response was also assessed using cellular models of CRC. Results KRAS mutations were present in 30% of the patients and were associated with resistance to cetuximab or panitumumab (P = .011). The BRAF V600E mutation was detected in 11 of 79 patients who had wild-type KRAS. None of the BRAF-mutated patients responded to treatment, whereas none of the responders carried BRAF mutations (P = .029). BRAF-mutated patients had significantly shorter progression-free survival (P = .011) and OS (P < .0001) than wild-type patients. In CRC cells, the introduction of BRAF V600E allele impaired the therapeutic effect of cetuximab or panitumumab. Treatment with the BRAF inhibitor sorafenib restored sensitivity to panitumumab or cetuximab of CRC cells carrying the V600E allele. CONCLUSION BRAF wild-type is required for response to panitumumab or cetuximab and could be used to select patients who are eligible for the treatment. Double-hit therapies aimed at simultaneous inhibition of epidermal growth factor receptor and BRAF warrant exploration in CRC patients carrying the V600E oncogenic mutation.


Lancet Oncology | 2010

Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis

Wendy De Roock; Bart Claes; David Bernasconi; Jef De Schutter; Bart Biesmans; George Fountzilas; Konstantine T. Kalogeras; Vassiliki Kotoula; Demetris Papamichael; Pierre Laurent-Puig; Frédérique Penault-Llorca; Philippe Rougier; Bruno Vincenzi; Daniele Santini; Giuseppe Tonini; Federico Cappuzzo; Milo Frattini; Francesca Molinari; Piercarlo Saletti; Sara De Dosso; Miriam Martini; Alberto Bardelli; Salvatore Siena; Andrea Sartore-Bianchi; Josep Tabernero; Teresa Macarulla; Frédéric Di Fiore; Alice Gangloff; Fortunato Ciardiello; Per Pfeiffer

BACKGROUND Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. METHODS 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. FINDINGS 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12 weeks versus 24 weeks (hazard ratio [HR] 1.98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types, with a response rate of 8.3% (2/24) in carriers of BRAF mutations versus 38.0% in BRAF wild types (124/326; OR 0.15, 95% CI 0.02-0.51; p=0.0012); and 7.7% (1/13) in carriers of NRAS mutations versus 38.1% in NRAS wild types (110/289; OR 0.14, 0.007-0.70; p=0.013). PIK3CA exon 9 mutations had no effect, whereas exon 20 mutations were associated with a worse outcome compared with wild types, with a response rate of 0.0% (0/9) versus 36.8% (121/329; OR 0.00, 0.00-0.89; p=0.029), a median PFS of 11.5 weeks versus 24 weeks (HR 2.52, 1.33-4.78; p=0.013), and a median overall survival of 34 weeks versus 51 weeks (3.29, 1.60-6.74; p=0.0057). Multivariate analysis and conditional inference trees confirmed that, if KRAS is not mutated, assessing BRAF, NRAS, and PIK3CA exon 20 mutations (in that order) gives additional information about outcome. Objective response rates in our series were 24.4% in the unselected population, 36.3% in the KRAS wild-type selected population, and 41.2% in the KRAS, BRAF, NRAS, and PIK3CA exon 20 wild-type population. INTERPRETATION While confirming the negative effect of KRAS mutations on outcome after cetuximab, we show that BRAF, NRAS, and PIK3CA exon 20 mutations are significantly associated with a low response rate. Objective response rates could be improved by additional genotyping of BRAF, NRAS, and PIK3CA exon 20 mutations in a KRAS wild-type population. FUNDING Belgian Federation against Cancer (Stichting tegen Kanker).


Cancer Research | 2009

PIK3CA Mutations in Colorectal Cancer Are Associated with Clinical Resistance to EGFR-Targeted Monoclonal Antibodies

Andrea Sartore-Bianchi; Miriam Martini; Francesca Molinari; Silvio Veronese; Michele Nichelatti; S. Artale; Federica Di Nicolantonio; Piercarlo Saletti; Sara De Dosso; Luca Mazzucchelli; Milo Frattini; Salvatore Siena; Alberto Bardelli

The monoclonal antibodies (moAb) panitumumab and cetuximab target the epidermal growth factor receptor (EGFR) and have proven valuable for the treatment of metastatic colorectal cancer (mCRC). EGFR-mediated signaling involves two main intracellular cascades: on one side KRAS activates BRAF, which in turn triggers the mitogen-activated protein kinases. On the other, membrane localization of the lipid kinase PIK3CA counteracts PTEN and promotes AKT1 phosphorylation, thereby activating a parallel intracellular axis. Constitutive activation of KRAS bypasses the corresponding signaling cascade and, accordingly, patients with mCRC bearing KRAS mutations are clinically resistant to therapy with panitumumab or cetuximab. We hypothesized that mutations activating PIK3CA could also preclude responsiveness to EGFR-targeted moAbs through a similar mechanism. Here, we present the mutational analysis of PIK3CA and KRAS and evaluation of the PTEN protein status in a cohort of 110 patients with mCRC treated with anti-EGFR moAbs. We observed 15 (13.6%) PIK3CA and 32 (29.0%) KRAS mutations. PIK3CA mutations were significantly associated with clinical resistance to panitumumab or cetuximab; none of the mutated patients achieved objective response (P = 0.038). When only KRAS wild-type tumors were analyzed, the statistical correlation was stronger (P = 0.016). Patients with PIK3CA mutations displayed a worse clinical outcome also in terms of progression-free survival (P = 0.035). Our data indicate that PIK3CA mutations can independently hamper the therapeutic response to panitumumab or cetuximab in mCRC. When the molecular status of the PIK3CA/PTEN and KRAS pathways are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to EGFR moAbs can be identified.


PLOS ONE | 2009

Multi-Determinants Analysis of Molecular Alterations for Predicting Clinical Benefit to EGFR-Targeted Monoclonal Antibodies in Colorectal Cancer

Andrea Sartore-Bianchi; Federica Di Nicolantonio; Michele Nichelatti; Francesca Molinari; Sara De Dosso; Piercarlo Saletti; Miriam Martini; Tiziana Cipani; Giovanna Marrapese; Luca Mazzucchelli; Simona Lamba; Silvio Veronese; Milo Frattini; Alberto Bardelli; Salvatore Siena

Background KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. Methodology/Principal Findings We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001). Conclusions/Significance When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.


Annals of Medicine | 2014

PI3K/AKT signaling pathway and cancer: an updated review.

Miriam Martini; Maria Chiara De Santis; Laura Braccini; Federico Gulluni; Emilio Hirsch

Abstract Despite development of novel agents targeting oncogenic pathways, matching targeted therapies to the genetic status of individual tumors is proving to be a daunting task for clinicians. To improve the clinical efficacy and to reduce the toxic side effects of treatments, a deep characterization of genetic alterations in different tumors is required. The mutational profile often evidences a gain of function or hyperactivity of phosphoinositide 3-kinases (PI3Ks) in tumors. These enzymes are activated downstream tyrosine kinase receptors (RTKs) and/or G proteins coupled receptors (GPCRs) and, via AKT, are able to induce mammalian target of rapamycin (mTOR) stimulation. Here, we elucidate the impact of class I (p110α, β, γ, and δ) catalytic subunit mutations on AKT-mediated cellular processes that control crucial mechanisms in tumor development. Moreover, the interrelation of PI3K signaling with mTOR, ERK, and RAS pathways will be discussed, exploiting the potential benefits of PI3K signaling inhibitors in clinical use.


Cancer Cell | 2015

Measurement of PIP3 Levels Reveals an Unexpected Role for p110β in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer

Carlotta Costa; Hiromichi Ebi; Miriam Martini; Sean A. Beausoleil; Anthony C. Faber; Charles T. Jakubik; Alan Huang; Youzhen Wang; Madhuri Nishtala; Ben Hall; Klarisa Rikova; Jean Zhao; Emilio Hirsch; Cyril H. Benes; Jeffrey A. Engelman

BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses

Federica Di Nicolantonio; Sabrina Arena; Margherita Gallicchio; Davide Zecchin; Miriam Martini; Simona Emilia Flonta; Giulia Stella; Simona Lamba; Carlotta Cancelliere; Mariangela Russo; Massimo Geuna; Giovanni Appendino; Roberto Fantozzi; Enzo Medico; Alberto Bardelli

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Developmental Cell | 2014

PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function

Irene Franco; Federico Gulluni; Carlo Cosimo Campa; Carlotta Costa; Jean Piero Margaria; Elisa Ciraolo; Miriam Martini; Daniel Monteyne; Elisa De Luca; Giulia Germena; York Posor; Tania Maffucci; Stefano Marengo; Volker Haucke; Marco Falasca; David Perez-Morga; Alessandra Boletta; Giorgio R. Merlo; Emilio Hirsch

Summary Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Frontiers in Oncology | 2013

Targeting PI3K in Cancer: Any Good News?

Miriam Martini; Elisa Ciraolo; Federico Gulluni; Emilio Hirsch

The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it’s one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug candidates include PI3K inhibitors, both pan- and isoform-specific inhibitors, AKT, mTOR, and dual PI3K/mTOR inhibitors. As novel compounds progress into clinical trials, it’s becoming urgent to identify and select patient population that most likely benefit from PI3K inhibition. In this review we will discuss individual PIK3CA mutations as predictors of sensitivity and resistance to targeted therapies, leading to use of novel PI3K/mTOR/AKT inhibitors to a more “personalized” treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia

Alessia Bottos; Miriam Martini; Federica Di Nicolantonio; Valentina Comunanza; Federica Maione; Alberto Minassi; Giovanni Appendino; Federico Bussolino; Alberto Bardelli

Carcinomas are comprised of transformed epithelial cells that are supported in their growth by a dedicated neovasculature. How the genetic milieu of the epithelial compartment influences tumor angiogenesis is largely unexplored. Drugs targeted to mutant cancer genes may act not only on tumor cells but also, directly or indirectly, on the surrounding stroma. We investigated the role of the BRAFV600E oncogene in tumor/vessel crosstalk and analyzed the effect of the BRAF inhibitor PLX4720 on tumor angiogenesis. Knock-in of the BRAFV600E allele into the genome of human epithelial cells triggered their angiogenic response. In cancer cells harboring oncogenic BRAF, the inhibitor PLX4720 switches off the ERK pathway and inhibits the expression of proangiogenic molecules. In tumor xenografts harboring the BRAFV600E, PLX4720 extensively modifies the vascular network causing abrogation of hypoxia. Overall, our results provide a functional link between oncogenic BRAF and angiogenesis. Furthermore, they indicate how the tumor vasculature can be “indirectly” besieged through targeting of a genetic lesion to which the cancer cells are addicted.

Collaboration


Dive into the Miriam Martini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge