Elisa Dalla Pozza
University of Verona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Dalla Pozza.
European Journal of Pharmaceutics and Biopharmaceutics | 2013
Silvia Arpicco; Carlotta Lerda; Elisa Dalla Pozza; Chiara Costanzo; Nicolas Tsapis; Barbara Stella; Massimo Donadelli; Ilaria Dando; Elias Fattal; Luigi Cattel; Marta Palmieri
The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.
Biochimica et Biophysica Acta | 2013
Ilaria Dando; Claudia Fiorini; Elisa Dalla Pozza; Chiara Padroni; Chiara Costanzo; Marta Palmieri; Massimo Donadelli
Mitochondrial uncoupling protein 2 (UCP2) can moderate oxidative stress by favoring the influx of protons into the mitochondrial matrix, thus reducing electron leakage from respiratory chain and mitochondrial superoxide production. Here, we demonstrate that UCP2 inhibition by genipin or UCP2 siRNA strongly increases reactive oxygen species (ROS) production inhibiting pancreatic adenocarcinoma cell growth. We also show that UCP2 inhibition triggers ROS-dependent nuclear translocation of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), formation of autophagosomes, and the expression of the autophagy marker LC3-II. Consistently, UCP2 over-expression significantly reduces basal autophagy confirming the anti-autophagic role of UCP2. Furthermore, we demonstrate that autophagy induced by UCP2 inhibition determines a ROS-dependent cell death, as indicated by the apoptosis decrease in the presence of the autophagy inhibitors chloroquine (CQ) or 3-methyladenine (3-MA), or the radical scavenger NAC. Intriguingly, the autophagy induced by genipin is able to potentiate the autophagic cell death triggered by gemcitabine, the standard chemotherapeutic drug for pancreatic adenocarcinoma, supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to standard chemotherapy. Our results demonstrate for the first time that UCP2 plays a role in autophagy regulation bringing new insights into mitochondrial uncoupling protein field.
Biochimica et Biophysica Acta | 2012
Elisa Dalla Pozza; Claudia Fiorini; Ilaria Dando; Marta Menegazzi; Anna Sgarbossa; Chiara Costanzo; Marta Palmieri; Massimo Donadelli
Cancer cells exhibit an endogenous constitutive oxidative stress higher than that of normal cells, which renders tumours vulnerable to further reactive oxygen species (ROS) production. Mitochondrial uncoupling protein 2 (UCP2) can mitigate oxidative stress by increasing the influx of protons into the mitochondrial matrix and reducing electron leakage and mitochondrial superoxide generation. Here, we demonstrate that chemical uncouplers or UCP2 over-expression strongly decrease mitochondrial superoxide induction by the anticancer drug gemcitabine (GEM) and protect cancer cells from GEM-induced apoptosis. Moreover, we show that GEM IC(50) values well correlate with the endogenous level of UCP2 mRNA, suggesting a critical role for mitochondrial uncoupling in GEM resistance. Interestingly, GEM treatment stimulates UCP2 mRNA expression suggesting that mitochondrial uncoupling could have a role also in the acquired resistance to GEM. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing strongly enhances GEM-induced mitochondrial superoxide generation and apoptosis, synergistically inhibiting cancer cell proliferation. These events are significantly reduced by the addition of the radical scavenger N-acetyl-l-cysteine or MnSOD over-expression, demonstrating a critical role of the oxidative stress. Normal primary fibroblasts are much less sensitive to GEM/genipin combination. Our results demonstrate for the first time that UCP2 has a role in cancer cell resistance to GEM supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to GEM treatment.
Biochimica et Biophysica Acta | 2013
Elisa Dalla Pozza; Carlotta Lerda; Chiara Costanzo; Massimo Donadelli; Ilaria Dando; Elisa Zoratti; Maria Teresa Scupoli; Stefania Beghelli; Aldo Scarpa; Elias Fattal; Silvia Arpicco; Marta Palmieri
Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.
American Journal of Pathology | 2012
Alessandra Rosati; Samantha Bersani; Francesca Tavano; Elisa Dalla Pozza; Margot De Marco; Marta Palmieri; Vincenzo De Laurenzi; Renato Franco; Giosuè Scognamiglio; Raffaele Palaia; Andrea Fontana; Pierluigi Di Sebastiano; Massimo Donadelli; Ilaria Dando; Jan Paul Medema; Frederike Dijk; Lieke Welling; Fabio F. di Mola; Raffaele Pezzilli; Maria Caterina Turco; Aldo Scarpa
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, being the fourth leading cause of cancer-related deaths. Long-term survival reaching 15% is achieved in less than 5% of patients who undergo surgery, and median survival is only 6 months in those with inoperable lesions. A deeper understanding of PDAC biologic characteristics as well as novel prognostic markers are therefore required to improve outcomes. Herein we report that BAG3, a protein with recognized anti-apoptotic activity, was expressed in 346 PDACs analyzed, but was not expressed in the surrounding nonneoplastic tissue. In a cohort of 66 patients who underwent radical resection (R0), survival was significantly shorter in patients with high BAG3 expression (median, 12 months) than in those with low BAG3 expression (median, 23 months) (P = 0.001). Furthermore, we report that BAG3 expression in PDAC-derived cell lines protects from apoptosis and confers resistance to gemcitabine, offering a partial explanation for the survival data. Our results indicate that BAG3 has a relevant role in PDAC biology, and suggest that BAG3 expression level might be a potential marker for prediction of patient outcome.
Proteomics | 2009
Daniela Cecconi; Massimo Donadelli; Elisa Dalla Pozza; Sara Rinalducci; Lello Zolla; Maria Teresa Scupoli; Pier Giorgio Righetti; Aldo Scarpa; Marta Palmieri
Our research group recently reported that pancreatic endocrine cancer cell lines are sensitive to the HDAC inhibitor trichostatin A (TSA). In the present paper, we show that the combined treatment of pancreatic endocrine tumour cell lines with TSA and the DNA methyltransferase inhibitor 5‐aza‐2′‐deoxycytidine (DAC) determines a strong synergistic inhibition of proliferation mainly due to apoptotic cell death. Proteomic analysis demonstrates that the modulation of specific proteins correlates with the antiproliferative effect of the drugs. A schematic network clarifies the most important targets or pathways involved in pancreatic endocrine cancer growth inhibition by single or combined drug treatments, which include proteasome, mitochondrial apoptotic pathway and caspase related proteins, p53 and Ras related proteins. A comparison between the patterns of proteins regulated by TSA or DAC in endocrine and ductal pancreatic cancer cell lines is also presented.
Free Radical Biology and Medicine | 2011
Elisa Dalla Pozza; Massimo Donadelli; Chiara Costanzo; Tatyana Zaniboni; Ilaria Dando; Marta Franchini; Silvia Arpicco; Aldo Scarpa; Marta Palmieri
Pancreatic adenocarcinoma is a common malignancy that remains refractory to all available therapies, including the gold standard drug gemcitabine (GEM). We investigated the effect of the combination of GEM and each of the ionophore compounds pyrrolidine dithiocarbamate (PDTC) and disulfiram [DSF; 1-(diethylthiocarbamoyldisulfanyl)-N,N-diethylmethanethioamide] on p53(-/-) pancreatic adenocarcinoma cell growth. PDTC or DSF synergistically inhibited cell proliferation when used in combination with GEM by inducing apoptotic cell death. This effect was associated with an increased mitochondrial O(2)(•-) production and was further enhanced by zinc ions. Basal levels of mitochondrial O(2)(•-) or manganese superoxide dismutase (MnSOD) strictly correlated with the IC(50) for GEM or the percentage of synergism. Thus, the most relevant values of the antiproliferative synergism were obtained in GEM-resistant pancreatic adenocarcinoma cell lines. Interestingly, the GEM-sensitive T3M4 cells transfected with MnSOD expression vector showed mitochondrial O(2)(•-) and IC(50) for GEM similar to those of resistant cell lines. In vivo experiments performed on nude mice xenotransplanted with the GEM-resistant PaCa44 cell line showed that only the combined treatment with GEM and DSF/Zn completely inhibited the growth of the tumoral masses. These results and the consideration that DSF is already used in clinics strongly support the GEM and DSF/Zn combination as a new approach to overcoming pancreatic cancer resistance to standard chemotherapy.
Oxidative Medicine and Cellular Longevity | 2015
Ilaria Dando; Marco Cordani; Elisa Dalla Pozza; Giulia Biondani; Massimo Donadelli; Marta Palmieri
Increasing evidence indicates that most of the tumors are sustained by a distinct population of cancer stem cells (CSCs), which are responsible for growth, metastasis, invasion, and recurrence. CSCs are typically characterized by self-renewal, the key biological process allowing continuous tumor proliferation, as well as by differentiation potential, which leads to the formation of the bulk of the tumor mass. CSCs have several advantages over the differentiated cancer cell populations, including the resistance to radio- and chemotherapy, and their gene-expression programs have been shown to correlate with poor clinical outcome, further supporting the relevance of stemness properties in cancer. The observation that CSCs possess enhanced mechanisms of protection from reactive oxygen species (ROS) induced stress and a different metabolism from the differentiated part of the tumor has paved the way to develop drugs targeting CSC specific signaling. In this review, we describe the role of ROS and of ROS-related microRNAs in the establishment and maintenance of self-renewal and differentiation capacities of CSCs.
Iubmb Life | 2015
Ilaria Dando; Elisa Dalla Pozza; Giulia Biondani; Marco Cordani; Marta Palmieri; Massimo Donadelli
Cancer stem cells (CSCs) are a sub‐population of quiescent cells endowed with self‐renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.
Journal of Proteomics | 2016
Jessica Brandi; Elisa Dalla Pozza; Ilaria Dando; Giulia Biondani; Elisa Robotti; Rosalind E. Jenkins; Victoria Elliott; Kevin Park; Emilio Marengo; Eithne Costello; Aldo Scarpa; Marta Palmieri; Daniela Cecconi
UNLABELLED Emerging research has demonstrated that pancreatic ductal adenocarcinoma (PDAC) contains a sub-population of cancer stem cells (CSCs) characterized by self-renewal, anchorage-independent-growth, long-term proliferation and chemoresistance. The secretome analysis of pancreatic CSCs has not yet been performed, although it may provide insight into tumour/microenvironment interactions and intracellular processes, as well as to identify potential biomarkers. To characterize the secreted proteins of pancreatic CSCs, we performed an iTRAQ-based proteomic analysis to compare the secretomes of Panc1 cancer stem-like cells (Panc1 CSCs) and parental cell line. A total of 72 proteins were found up-/down-regulated in the conditioned medium of Panc1 CSCs. The pathway analysis revealed modulation of vital physiological pathways including glycolysis, gluconeogenesis and pentose phosphate. Through ELISA immunoassays we analysed the presence of the three proteins most highly secreted by Panc1 CSCs (ceruloplasmin, galectin-3, and MARCKS) in sera of PDAC patient. ROC curve analysis suggests ceruloplasmin as promising marker for patients negative for CA19-9. Overall, our study provides a systemic secretome analysis of pancreatic CSCs revealing a number of secreted proteins which participate in pathological conditions including cancer differentiation, invasion and metastasis. They may serve as a valuable pool of proteins from which biomarkers and therapeutic targets can be identified. BIOLOGICAL SIGNIFICANCE The secretome of CSCs is a rich reservoir of biomarkers of cancer progression and molecular therapeutic targets, and thus is a topic of great interest for cancer research. The secretome analysis of pancreatic CSCs has not yet been performed. Recently, our group has demonstrated that Panc-1 CSCs isolated from parental cell line by using the CSC selective medium, represent a model of great importance to deepen the understanding of the biology of pancreatic adenocarcinoma. To our knowledge, this is the first proteomic study of pancreatic CSC secretome. We performed an iTRAQ-based analysis to compare the secretomes of Panc1 CSCs and Panc1 parental cell line and identified a total of 43 proteins secreted at higher level by pancreatic cancer stem cells. We found modulation of different vital physiological pathways (such as glycolysis and gluconeogenesis, pentose phosphate pathway) and the involvement of CSC secreted proteins (for example 72kDa type IV collagenase, galectin-3, alpha-actinin-4, and MARCKS) in pathological conditions including cancer differentiation, invasion and metastasis. By ELISA verification we found that MARCKS and ceruloplasmin discriminate between controls and PDAC patients; in addition ROC curve analyses indicate that MARCKS does not have diagnostic accuracy, while ceruloplasmin could be a promising marker only for patients negative for CA19-9. We think that the findings reported in our manuscript advance the understanding of the pathways implicated in tumourigenesis, metastasis and chemoresistance of pancreatic cancer, and also identify a pool of proteins from which novel candidate diagnostic and therapeutic biomarkers could be discovered.