Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Cordani is active.

Publication


Featured researches published by Marco Cordani.


Biochimica et Biophysica Acta | 2015

Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine

Claudia Fiorini; Marco Cordani; Chiara Padroni; Giovanni Blandino; Silvia Di Agostino; Massimo Donadelli

Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.


Biochimica et Biophysica Acta | 2015

Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner

Claudia Fiorini; Marco Cordani; Giovanni Gotte; Delia Picone; Massimo Donadelli

Onconase® (ONC) is a member of the RNase super-family that is secreted in oocytes and early embryos of Rana pipiens. Over the last years, research interest about this small and basic frog RNase, also called ranpirnase, constantly increased because of its high cytotoxicity and anticancer properties. Onconase is currently used in clinical trials for cancer therapy; however, the precise mechanisms determining cytotoxicity in cancer cells have not yet been fully investigated. In the present manuscript, we evaluate the antitumoral property of onconase in pancreatic adenocarcinoma cells and in non-tumorigenic cells as a control. We demonstrate that ONC stimulates a strong antiproliferative and proapoptotic effect in cancer cells by reporting for the first time that ONC triggers Beclin1-mediated autophagic cancer cell death. In addition, ONC inhibits the expression of mitochondrial uncoupling protein 2 (UCP2) and of manganese-dependent superoxide dismutase (MnSOD) triggering mitochondrial superoxide ion production. ONC-induced reactive oxygen species (ROS) are responsible for Akt/mTOR pathway stimulation determining the sensitivity of cancer cells to mTOR inhibitors and lessening autophagic stimulation. This indicates ROS/Akt/mTOR axis as a strategy adopted by cancer cells to reduce ONC-mediated cytotoxic autophagy stimulation. In addition, we demonstrate that ONC can sensitize pancreatic cancer cells to the standard chemotherapeutic agent gemcitabine allowing a reduction of drug concentration when used in combination settings, thus suggesting a lowering of chemotherapy-related side effects. Altogether, our results shed more light on the mechanisms lying at the basis of ONC antiproliferative effect in cancer cells and support its potential use to develop new anticancer strategies.


Oxidative Medicine and Cellular Longevity | 2015

Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells.

Ilaria Dando; Marco Cordani; Elisa Dalla Pozza; Giulia Biondani; Massimo Donadelli; Marta Palmieri

Increasing evidence indicates that most of the tumors are sustained by a distinct population of cancer stem cells (CSCs), which are responsible for growth, metastasis, invasion, and recurrence. CSCs are typically characterized by self-renewal, the key biological process allowing continuous tumor proliferation, as well as by differentiation potential, which leads to the formation of the bulk of the tumor mass. CSCs have several advantages over the differentiated cancer cell populations, including the resistance to radio- and chemotherapy, and their gene-expression programs have been shown to correlate with poor clinical outcome, further supporting the relevance of stemness properties in cancer. The observation that CSCs possess enhanced mechanisms of protection from reactive oxygen species (ROS) induced stress and a different metabolism from the differentiated part of the tumor has paved the way to develop drugs targeting CSC specific signaling. In this review, we describe the role of ROS and of ROS-related microRNAs in the establishment and maintenance of self-renewal and differentiation capacities of CSCs.


Iubmb Life | 2015

The metabolic landscape of cancer stem cells

Ilaria Dando; Elisa Dalla Pozza; Giulia Biondani; Marco Cordani; Marta Palmieri; Massimo Donadelli

Cancer stem cells (CSCs) are a sub‐population of quiescent cells endowed with self‐renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.


Cancer Letters | 2016

Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis.

Marco Cordani; Raffaella Pacchiana; Giovanna Butera; Gabriella D'Orazi; Aldo Scarpa; Massimo Donadelli

An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.


Molecular Oncology | 2016

Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition

Marco Cordani; Elisa Oppici; Ilaria Dando; Elena Butturini; Elisa Dalla Pozza; Mercedes Nadal-Serrano; Jordi Oliver; Pilar Roca; Sofia Mariotto; Barbara Cellini; Giovanni Blandino; Marta Palmieri; Silvia Di Agostino; Massimo Donadelli

Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain‐of‐function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy‐related proteins and enzymes as BECN1 (and P‐BECN1), DRAM1, ATG12, SESN1/2 and P‐AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF‐κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF‐κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53‐and autophagy‐related signature. Interestingly, the mutant p53‐driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy.


Iubmb Life | 2016

Mutant p53 and mTOR/PKM2 regulation in cancer cells

Ilaria Dando; Marco Cordani; Massimo Donadelli

Mutations of TP53 gene are the most common feature in aggressive malignant cells. In addition to the loss of the tumor suppressive role of wild‐type p53, hotspot mutant p53 isoforms display oncogenic proprieties notoriously referred as gain of functions (GOFs) which result in chemoresistance to therapies, genomic instability, aberrant deregulation of cell cycle progression, invasiveness and enhanced metastatic potential, and finally, in patient poor survival rate. The identification of novel functional oncogenic pathways regulated by mutant p53 represent and intriguing topic for emerging therapies against a broad spectrum of cancer types bearing mutant TP53 gene. Mammalian target of rapamycin (mTOR), as well as pyruvate kinase isoform M2 (PKM2) are master regulators of cancer growth, metabolism, and cell proliferation. Herein, we report that GOF mutant R175H and R273H p53 proteins trigger PKM2 phosphorylation on Tyr 105 through the involvement of mTOR signaling. Our data, together with the newly discovered connection between mutant p53 and mTOR stimulation, raise important implications for the potential therapeutic use of synthetic drugs inhibiting mTOR/PKM2 axis in cancer cells bearing mutant TP53 gene. We further hypothesize that mTOR/PKM2 pathway stimulation serves to sustain the oncogenic activity of mutant p53 through both the enhancement of chemoresistance and of aerobic glycolysis of cancer cells.


Free Radical Biology and Medicine | 2016

The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition

Jessica Brandi; Daniela Cecconi; Marco Cordani; Margalida Torrens-Mas; Raffaella Pacchiana; Elisa Dalla Pozza; Giovanna Butera; Marcello Manfredi; Emilio Marengo; Jordi Oliver; Pilar Roca; Ilaria Dando; Massimo Donadelli

Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway.


Biochimica et Biophysica Acta | 2017

Molecular interplay between mutant p53 proteins and autophagy in cancer cells.

Marco Cordani; Giovanna Butera; Raffaella Pacchiana; Massimo Donadelli


Translational Medicine Reports | 2017

The antioxidant mitochondrial protein UCP2 promotes cancer development connecting the Warburg effect and autophagy

Marco Cordani; Giovanna Butera; Raffaella Pacchiana; Massimo Donadelli

Collaboration


Dive into the Marco Cordani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge