Elisa Ferrando-May
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Ferrando-May.
Toxicology Letters | 1998
Pierluigi Nicotera; Marcel Leist; Elisa Ferrando-May
Regardless of whether apoptosis or necrosis are elicited by toxicants or by pathophysiological conditions they are considered conceptually distinct forms of cell death. Nevertheless, there is increasing evidence that classical apoptosis and necrosis represent only the extreme ends of a wide range of possible morphological and biochemical deaths. The two classical types of demise can occur simultaneously in tissues or cell cultures exposed to the same stimulus and often, the intensity of the same initial insult decides the prevalence of either apoptosis or necrosis. The execution of the death program seems to involve a relatively limited number of pathways. In many instances, their ordered execution results in characteristic morphological and biochemical changes termed apoptosis. However, some subroutines of the degradation program may not be active in all cases of cell death. Then, the morphological appearance of dying cells and some of their biochemical alterations differ from those of classical apoptosis. We have recently shown that intracellular energy levels and mitochondrial function are rapidly compromised in necrosis, but not in apoptosis of neuronal cells. Then we went on to show that pre-empting human T cells of ATP switches the type of demise caused by two classic apoptotic triggers (staurosporin and CD95 stimulation) from apoptosis to necrosis. Conditions of controlled intracellular ATP depletion, which was obtained by blocking mitochondrial and/or glycolytic ATP generation were used in combination with repletion of the cytosolic ATP pool with glucose to redirect the death program towards apoptosis or necrosis.
Molecular Medicine | 1997
Marcel Leist; Christiane Volbracht; Simone Kühnle; Eugenio Fava; Elisa Ferrando-May; Pierluigi Nicotera
BackgroundExcitotoxicity and excess generation of nitric oxide (NO) are believed to be fundamental mechanisms in many acute and chronic neurodegenerative disorders. Disturbance of Ca2+ homeostasis and protein nitration/nitrosylation are key features in such conditions. Recently, a family of proteases collectively known as caspases has been implicated as common executor of a variety of death signals. In addition, overactivation of poly-(ADP-ribose) polymerase (PARP) has been observed in neuronal excitotoxicity. We therefore designed this study to investigate whether triggering of caspase activity and/or activation of PARP played a role in cerebellar granule cell (CGC) apoptosis elicited by peroxynitrite (ONOO−) or NO donors.Materials and MethodsCGC from wild-type or PARP −/− mice were exposed to various nitric oxide donors. Caspase activation and its implications for membrane alterations, Ca2+ homeostasis, intracellular proteolysis, chromatin degradation, and cell death were investigated.ResultsCGC exposed to NO donors undergo apoptosis, which is mediated by excess synaptic release of excitotoxic mediators. This excitotoxic mechanism differs from direct NO toxicity in some other neuronal populations and does not involve PARP activation. Inhibition of caspases with different peptide substrates prevented cell death and the related features, including intracellular proteolysis, chromatin breakdown, and translocation of phosphatidylserine to the outer surface of the cell membrane. Increased Ca2+ influx following N-methyl-D-aspartate (NMDA) receptor (NMDA-R) activation was not inhibited by caspase inhibitors.ConclusionsIn CGC, NO donors elicit apoptosis by a mechanism involving excitotoxic mediators, Ca2+ overload, and subsequent activation of caspases.
Molecular and Cellular Biology | 2008
Ferdinand Kappes; Jörg Fahrer; Michael S. Khodadoust; Anja Tabbert; C. Strasser; Nirit Mor-Vaknin; M. Moreno-Villanueva; Alexander Bürkle; David M. Markovitz; Elisa Ferrando-May
ABSTRACT DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells committed to die, a portion of the cellular DEK pool is extensively posttranslationally modified by phosphorylation and poly(ADP-ribosyl)ation. Through interference with DEK expression, we further show that DEK promotes the repair of DNA lesions and protects cells from genotoxic agents that typically trigger poly(ADP-ribose) polymerase activation. The posttranslational modification of DEK during apoptosis is accompanied by the removal of the protein from chromatin and its release into the extracellular space. Released modified DEK is recognized by autoantibodies present in the synovial fluids of patients affected by juvenile rheumatoid arthritis/juvenile idiopathic arthritis. These findings point to a crucial role of poly(ADP-ribosyl)ation in shaping DEKs autoantigenic properties and in its function as a promoter of cell survival.
Apoptosis | 2006
Sudharsana Rao Ande; Phaneeswara Rao Kommoju; Sigrid Draxl; Michael Murkovic; Peter Macheroux; Sandro Ghisla; Elisa Ferrando-May
L-amino acid oxidase (LAAO) from the Malayan pit viper induces both necrosis and apoptosis in Jurkat cells. Cell death by necrosis is attributed to H2O2 produced by oxidation of α-amino acids. In the presence of catalase that effectively scavenges H2O2, a switch to apoptosis is observed. The major factors contributing to apoptosis are proposed to be: (i) generation of toxic intermediates from fetal calf serum (ii) binding and internalization of LAAO. The latter process appears to be mediated by the glycan moiety of the enzyme as desialylation reduces cytotoxicity. D-amino acid oxidase (DAAO), which catalyzes the same reaction as LAAO but lacks glycosylation, triggers necrosis as a consequence of H2O2 production but not apoptosis in the presence of catalase. Thus induction of cell death by LAAO appears to involve both the generation of H2O2 and the molecular interaction of the glycan moiety of the enzyme with structures at the cell surface.
Cell Death & Differentiation | 2005
Elisa Ferrando-May
The apoptotic demolition of the nucleus is accomplished by diverse proapoptotic factors, most of which are activated in the cytoplasm and gain access to the nucleoplasm during the cell death process. The nucleus is also the main target for genotoxic insult, a potent apoptotic trigger. Signals generated in the nucleus by DNA damage have to propagate to all cellular compartments to ensure the coordinated execution of cell demise. The nucleocytoplasmic shuttling of signalling and execution factors is thus an integral part of the apoptotic programme. Several proteins implicated in apoptotic cell death have been shown to migrate in and out of the nucleus following apoptosis induction. This review summarises the current knowledge on nucleocytoplasmic trafficking of apoptosis-relevant proteins. The effects of apoptosis induction on the nucleocytoplasmic transport machinery are also discussed. Finally, a potential role of nuclear transport as a critical control point of the apoptotic signal cascade is proposed.
The EMBO Journal | 2009
Ulrike Camenisch; Daniel Träutlein; Flurina C. Clement; Jia Fei; Alfred Leitenstorfer; Elisa Ferrando-May; Hanspeter Naegeli
Xeroderma pigmentosum group C (XPC) protein initiates the DNA excision repair of helix‐distorting base lesions. To understand how this versatile subunit searches for aberrant sites within the vast background of normal genomic DNA, the real‐time redistribution of fluorescent fusion constructs was monitored after high‐resolution DNA damage induction. Bidirectional truncation analyses disclosed a surprisingly short recognition hotspot, comprising ∼15% of human XPC, that includes two β‐hairpin domains with a preference for non‐hydrogen‐bonded bases in double‐stranded DNA. However, to detect damaged sites in living cells, these DNA‐attractive domains depend on the partially DNA‐repulsive action of an adjacent β‐turn extension that promotes the mobility of XPC molecules searching for lesions. The key function of this dynamic interaction surface is shown by a site‐directed charge inversion, which results in increased affinity for native DNA, retarded nuclear mobility and diminished repair efficiency. These studies reveal a two‐stage discrimination process, whereby XPC protein first deploys a dynamic sensor interface to rapidly interrogate the double helix, thus forming a transient recognition intermediate before the final installation of a more static repair‐initiating complex.
Journal of Biological Chemistry | 2006
Monika Patre; Anja Tabbert; Daniela Hermann; Henning Walczak; Hans-Richard Rackwitz; Volker C. Cordes; Elisa Ferrando-May
Caspases were recently implicated in the functional impairment of the nuclear pore complex during apoptosis, affecting its dual activity as nucleocytoplasmic transport channel and permeability barrier. Concurrently, electron microscopic data indicated that nuclear pore morphology is not overtly altered in apoptotic cells, raising the question of how caspases may deactivate nuclear pore function while leaving its overall structure largely intact. To clarify this issue we have analyzed the fate of all known nuclear pore proteins during apoptotic cell death. Our results show that only two of more than 20 nuclear pore core structure components, namely Nup93 and Nup96, are caspase targets. Both proteins are cleaved near their N terminus, disrupting the domains required for interaction with other nucleoporins actively involved in transport and providing the permeability barrier but dispensable for maintaining the nuclear pore scaffold. Caspase-mediated proteolysis of only few nuclear pore complex components may exemplify a general strategy of apoptotic cells to efficiently disable huge macromolecular machines.
Nucleic Acids Research | 2010
Daniel Träutlein; Martin Deibler; Alfred Leitenstorfer; Elisa Ferrando-May
Highly confined DNA damage by femtosecond laser irradiation currently arises as a powerful tool to understand DNA repair in live cells as a function of space and time. However, the specificity with respect to damage type is limited. Here, we present an irradiation procedure based on a widely tunable Er/Yb : fiber femtosecond laser source that favors the formation of DNA strand breaks over that of UV photoproducts by more than one order of magnitude. We explain this selectivity with the different power dependence of the reactions generating strand breaks, mainly involving reactive radical intermediates, and the direct photochemical process leading to UV-photoproducts. Thus, localized multi-photon excitation with a wavelength longer than 1 µm allows for the selective production of DNA strand breaks at sub-micrometer spatial resolution in the absence of photosensitizers.
The EMBO Journal | 1993
Elisa Ferrando-May; M Krah; Wolfgang Marwan; Dieter Oesterhelt
We have investigated the functional relationship between two proteins involved in the photosensory system of the archaeon Halobacterium salinarium: the photoreceptor sensory rhodopsin I (SRI) and the halobacterial transducer rhodopsin I (HtrI), which has been proposed to be the putative signal transducer of SRI, by genomic DNA analysis of two independent SRI negative mutants, Pho81 and D1. Southern and PCR analyses revealed that both strains bear alterations in the 5′ flanking region of the gene encoding SRI, sopI. DNA sequence analysis confirmed the occurrence in this region of htrI, the gene encoding the putative transducer protein. PCR and Northern analyses have shown further that sopI and htrI are expressed as a single transcriptional unit, thus explaining the lack of SRI in mutants with a defective htrI. Expression of the cloned sopI under the control of a heterologous promoter did not restore the SRI‐dependent photoresponse in the strain Pho81. Moreover, the photocycling rate of the expressed pigment was clearly lower than in wild type. HtrI is therefore essential for SRI function and most likely modulates the photochemical properties of the photoreceptor via direct physical interaction. Finally, reintroduction of both sopI and htrI into Pho81 and D1 restored the SRI photochemistry and its physiological function. Our results provide the first experimental evidence for the functional coupling between SRI and HtrI and corroborate the proposed model in which HtrI acts as the signal transducer of this archaeal seven‐helix photoreceptor in a way analogous to the bacterial chemotaxis transducers.
Arthritis & Rheumatism | 2011
Nirit Mor-Vaknin; Ferdinand Kappes; Amalie E. Dick; Maureen Legendre; Catalina Damoc; Seagal Teitz-Tennenbaum; Roland P.S. Kwok; Elisa Ferrando-May; Barbara S. Adams; David M. Markovitz
OBJECTIVE DEK is a nuclear phosphoprotein and autoantigen in a subset of children with juvenile idiopathic arthritis (JIA). Autoantibodies to DEK are also found in a broad spectrum of disorders associated with abnormal immune activation. We previously demonstrated that DEK is secreted by macrophages, is released by apoptotic T cells, and attracts leukocytes. Since DEK has been identified in the synovial fluid (SF) of patients with JIA, this study was undertaken to investigate how DEK protein and/or autoantibodies may contribute to the pathogenesis of JIA. METHODS DEK autoantibodies, immune complexes (ICs), and synovial macrophages were purified from the SF of patients with JIA. DEK autoantibodies and ICs were purified by affinity-column chromatography and analyzed by 2-dimensional gel electrophoresis, immunoblotting, and enzyme-linked immunosorbent assay. DEK in supernatants and exosomes was purified by serial centrifugation and immunoprecipitation with magnetic beads, and posttranslational modifications of DEK were identified by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). RESULTS DEK autoantibodies and protein were found in the SF of patients with JIA. Secretion of DEK by synovial macrophages was observed both in a free form and via exosomes. DEK autoantibodies (IgG2) may activate the complement cascade, primarily recognize the C-terminal portion of DEK protein, and exhibit higher affinity for acetylated DEK. Consistent with these observations, DEK underwent acetylation on an unprecedented number of lysine residues, as demonstrated by nano-LC-MS/MS. CONCLUSION These results indicate that DEK can contribute directly to joint inflammation in JIA by generating ICs through high-affinity interaction between DEK and DEK autoantibodies, a process enhanced by acetylation of DEK in the inflamed joint.