Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sascha Beneke is active.

Publication


Featured researches published by Sascha Beneke.


Nucleic Acids Research | 2007

Poly(ADP-ribosyl)ation in mammalian ageing

Sascha Beneke; Alexander Bürkle

Poly(ADP-ribose) polymerases (PARPs) catalyze the post-translational modification of proteins with poly(ADP-ribose). Two PARP isoforms, PARP-1 and PARP-2, display catalytic activity by contact with DNA-strand breaks and are involved in DNA base-excision repair and other repair pathways. A body of correlative data suggests a link between DNA damage-induced poly(ADP-ribosyl)ation and mammalian longevity. Recent research on PARPs and poly(ADP-ribose) yielded several candidate mechanisms through which poly(ADP-ribosyl)ation might act as a factor that limits the rate of ageing.


International Journal of Cancer | 2004

Poly(ADP-ribosyl)ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions.

Sascha Beneke; Joerg Diefenbach; Alexander Bürkle

Poly(ADP‐ribose) polymerases are involved in many aspects of regulation of cellular functions. Using NAD+ as a substrate, they catalyse the covalent transfer of ADP‐ribose units onto several acceptor proteins to form a branched ADP‐ribose polymer. The best characterised and first discovered member of this multiprotein family is PARP‐1. Its catalytic activity is markedly stimulated upon binding to DNA strand interruptions, and the resulting polymer is thought to function in chromatin relaxation as well as in signalling the presence of damage to DNA repair complexes and in regulating enzyme activities. Moderate activation of PARP‐1 facilitates the efficient repair of DNA damage arising from monofunctional alkylating agents, reactive oxygen species or ionising radiation, but severe genotoxic stress leads to rapid energy consumption and subsequently to necrotic cell death. The latter aspect of PARP‐1 activity has been implicated in the pathogenesis of various clinical conditions such as shock, ischaemia‐reperfusion and diabetes. Inhibition of ADP‐ribose polymer formation has been shown to be effective, on the one hand, in the treatment of cancer in combination with alkylating agents by suppressing DNA repair and thus driving tumour cells into apoptosis, and on the other hand it appears to be a promising drug target for the treatment of pathologic conditions involving oxidative stress. In view of the existence of several members of the PARP family in mammalian cells, one has to be aware of possible side effects but also of a wide spectrum of potential clinical applications, which calls for the development of more specific inhibitors.


International Journal of Cancer | 2000

Negative regulation of alkylation‐induced sister‐chromatid exchange by poly(ADP‐ribose) polymerase‐1 activity

Ralph G. Meyer; Marcus Müller; Sascha Beneke; Jan-Heiner Küpper; Alexander Bürkle

One of the earliest responses to DNA damage in eukaryotic cells is activation of poly(ADP‐ribose) polymerase‐1 (PARP‐1), a DNA strand break–dependent nuclear enzyme which covalently modifies proteins with poly(ADP‐ribose). Here, we show that conditional over‐expression of PARP‐1 in stably transfected hamster cells, which causes cellular over‐accumulation of poly(ADP‐ribose) by several‐fold, strongly suppresses alkylation‐induced sister‐chromatid exchange (SCE), while cytotoxicity of alkylation treatment is slightly enhanced. Viewed together with the known potentiation of SCE by abrogation of PARP‐1 activity, our results provide evidence that PARP‐1 activity is an important regulator of alkylation‐induced SCE formation, imposing a control that is strictly negative and commensurate with the level of enzyme activity. Int. J. Cancer 88:351–355, 2000.


Nucleic Acids Research | 2008

Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1

Sascha Beneke; Odile Cohausz; Maria Malanga; Petra Boukamp; Felix R. Althaus; Alexander Bürkle

Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the proteasome. We show that pharmacological inhibition of poly(ADP-ribose) polymerase activity in cells from two different species leads to rapid decrease in median telomere length and stabilization at a lower setting. Specific knockdown of poly(ADP-ribose) polymerase-1 by RNA interference had the same effect. The length of the single-stranded telomeric overhang as well as telomerase activity were not affected. Release of inhibition led to a fast re-gain in telomere length to control levels in cells expressing active telomerase. We conclude that poly(ADP-ribose) polymerase-1 activity and probably its interplay with telomeric-repeat binding factor-2 is an important determinant in telomere regulation. Our findings reinforce the link between poly(ADP-ribosyl)ation and aging/longevity and also impact on the use of poly(ADP-ribose) polymerase inhibitors in tumor therapy.


Experimental Gerontology | 2008

Poly(ADP-ribose) polymerase activity in different pathologies : the link to inflammation and infarction

Sascha Beneke

DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.


FEBS Journal | 2014

Poly(ADP‐ribose)‐mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function

Jan M.F. Fischer; Oliver Popp; Daniel Gebhard; Sebastian Veith; Arthur Fischbach; Sascha Beneke; Alfred Leitenstorfer; Jörg Bergemann; Martin Scheffner; Elisa Ferrando-May; Aswin Mangerich; Alexander Bürkle

Poly(ADP‐ribose) (PAR) is a complex and reversible post‐translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high‐affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction. First, we confirm that pharmacological inhibition of cellular poly(ADP‐ribosyl)ation (PARylation) impairs NER efficacy. Second, we demonstrate that the XPA–PAR interaction is mediated by specific basic amino acids within a highly conserved PAR‐binding motif, which overlaps the DNA damage‐binding protein 2 (DDB2) and transcription factor II H (TFIIH) interaction domains of XPA. Third, biochemical studies reveal a mutual regulation of PARP1 and XPA functions showing that, on the one hand, the XPA–PAR interaction lowers the DNA binding affinity of XPA, whereas, on the other hand, XPA itself strongly stimulates PARP1 enzymatic activity. Fourth, microirradiation experiments in U2OS cells demonstrate that PARP inhibition alters the recruitment properties of XPA‐green fluorescent protein to sites of laser‐induced DNA damage. In conclusion, our results reveal that XPA and PARP1 regulate each other in a reciprocal and PAR‐dependent manner, potentially acting as a fine‐tuning mechanism for the spatio‐temporal regulation of the two factors during NER.


Mechanisms of Ageing and Development | 2010

Enzyme characteristics of recombinant poly(ADP-ribose) polymerases-1 of rat and human origin mirror the correlation between cellular poly(ADP-ribosyl)ation capacity and species-specific life span.

Sascha Beneke; Anna-Lena Scherr; Viviane Ponath; Oliver Popp; Alexander Bürkle

Poly(ADP-ribosyl)ation is a posttranslational modification, which is involved in many cellular functions, including DNA repair and maintenance of genomic stability, and has also been implicated in cellular and organismal ageing. We have previously reported that maximum poly(ADP-ribosyl)ation capacity in mononuclear blood cells is correlated with mammalian life span. Here we show that the difference between a long-lived and a short-lived species tested (i.e. man and rat) is directly mirrored by the enzymatic parameters of recombinant poly(ADP-ribose) polymerase-1 (PARP-1), i.e. substrate affinity and reaction velocity. In addition, we have characterized two human PARP-1 alleles and assign their activity difference to their respective initial velocity and not substrate affinity.


Experimental Gerontology | 2004

Poly(ADP-Ribosyl)ation and Aging

Alexander Bürkle; Sascha Beneke; Marie-Laure Muiras

Poly(ADP-ribosyl)ation is a DNA strand break-driven post-translational modification of proteins catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), with NAD+ serving as substrate. Poly(ADP-ribosyl)ation is triggered by DNA strand breaks, is functionally associated with DNA repair pathways and is a survival factor for cells under low to moderate levels of genotoxic stress. We have previously described a positive correlation between poly(ADP-ribosyl)ation capacity of mononuclear blood cells with longevity of mammalian species. Our comparison of purified recombinant human and rat PARP-1 revealed that this correlation might be explained in part by evolutionary sequence divergence. We have also developed molecular genetic approaches to modulate the poly(ADP-ribosyl)ation status in living cells. Our results revealed that PARP-1 acts as a negative regulator of DNA damage-induced genomic instability, the latter being known as an important driving force for carcinogenesis. Our recent data obtained in transgenic mice with selective expression of a dominant negative version of PARP-1 in basal skin keratinocytes indicate that PARP-1 activity suppresses skin papilloma formation in a two-stage skin carcinogenesis protocol. It is tempting to speculate that increased poly(ADP-ribosyl)ation capacity in long-lived species might help retard the accumulation of DNA damage and of mutations and thus slow down the rate of aging and of carcinogenesis more efficiently as compared with short-lived animals.


PLOS ONE | 2012

Chromatin Composition Is Changed by Poly(ADP-ribosyl)ation during Chromatin Immunoprecipitation

Sascha Beneke; Kirstin S. Meyer; Anja Holtz; Katharina Hüttner; Alexander Bürkle

Chromatin-immunoprecipitation (ChIP) employs generally a mild formaldehyde cross-linking step, which is followed by isolation of specific protein-DNA complexes and subsequent PCR testing, to analyze DNA-protein interactions. Poly(ADP-ribosyl)ation, a posttranslational modification involved in diverse cellular functions like repair, replication, transcription, and cell death regulation, is most prominent after DNA damage. Poly(ADP-ribose)polymerase-1 is activated upon binding to DNA strand-breaks and coordinates repair by recruitment or displacement of proteins. Several proteins involved in different nuclear pathways are directly modified or contain poly(ADP-ribose)-interaction motifs. Thus, poly(ADP-ribose) regulates chromatin composition. In immunofluorescence experiments, we noticed artificial polymer-formation after formaldehyde-fixation of undamaged cells. Therefore, we analyzed if the formaldehyde applied during ChIP also induces poly(ADP-ribosyl)ation and its impact on chromatin composition. We observed massive polymer-formation in three different ChIP-protocols tested independent on the cell line. This was due to induction of DNA damage signaling as monitored by γH2AX formation. To abrogate poly(ADP-ribose) synthesis, we inhibited this enzymatic reaction either pharmacologically or by increased formaldehyde concentration. Both approaches changed ChIP-efficiency. Additionally, we detected specific differences in promoter-occupancy of tested transcription factors as well as the in the presence of histone H1 at the respective sites. In summary, we show here that standard ChIP is flawed by artificial formation of poly(ADP-ribose) and suppression of this enzymatic activity improves ChIP-efficiency in general. Also, we detected specific changes in promoter-occupancy dependent on poly(ADP-ribose). By preventing polymer synthesis with the proposed modifications in standard ChIP protocols it is now possible to analyze the natural chromatin-composition.


Mechanisms of Ageing and Development | 2010

Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms

Valentina Strecker; Sören Mai; Britta Muster; Sascha Beneke; Alexander Bürkle; Jürgen Bereiter-Hahn; Marina Jendrach

Elevated reactive oxygen species (ROS) levels have been observed in mammals during aging, implying an important role of ROS in the aging process. Most bird species are known to live longer and to contain lower ROS levels than mammals of the same body weight. The influence of ROS on the aging process of birds has been investigated using pigeon embryonic fibroblasts (PEF) and chicken embryonic fibroblasts (CEF). ROS levels in young avian cells were much lower than in human cells. When cultivated till replicative senescence, PEF proliferated about one-third longer compared to CEF. However, both senescent avian cell populations showed no increased ROS levels or accumulation of ROS-induced damage on the mtDNA or protein level. The investigation for quality control (QC) mechanisms revealed that the autophagosomal/lysosomal pathway was not downregulated in old avian cells and stable overexpression of the autophagy protein ATG5 improved mitochondrial fitness, enhanced the resistance against oxidative stress and prolonged the life span of CEF. Oxidative stress-mediated apoptosis induced a dose-dependent cell proliferation in CEF as well as in PEF. Taken together, our data indicate that autophagy and compensatory proliferation act as QC mechanisms, while ROS did not influence the aging process in avian cells.

Collaboration


Dive into the Sascha Beneke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph G. Meyer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Gwosch

University of Konstanz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Popp

University of Konstanz

View shared research outputs
Researchain Logo
Decentralizing Knowledge