Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Giovannetti is active.

Publication


Featured researches published by Elisa Giovannetti.


Cancer Research | 2010

MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying Its Role in the Modulation of Gemcitabine Activity

Elisa Giovannetti; Niccola Funel; Godefridus J. Peters; Marco Del Chiaro; Leyla A. Erozenci; Enrico Vasile; Leticia G. Leon; Luca Pollina; Annemieke Groen; Alfredo Falcone; Romano Danesi; Daniela Campani; Henk M.W. Verheul; Ugo Boggi

MicroRNA-21 (miR-21) was reported to be overexpressed and contributes to invasion and gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to evaluate whether miR-21 expression was associated with the overall survival (OS) of PDAC patients treated with gemcitabine and to provide mechanistic insights for new therapeutic targets. miR-21 expression was evaluated in cells (including 7 PDAC cell lines, 7 primary cultures, fibroblasts, and a normal pancreatic ductal cell line) and tissues (neoplastic specimens from 81 PDAC patients and normal ductal samples) isolated by laser microdissection. The role of miR-21 on the pharmacologic effects of gemcitabine was studied with a specific miR-21 precursor (pre-miR-21). Patients with high miR-21 expression had a significantly shorter OS both in the metastatic and in the adjuvant setting. Multivariate analysis confirmed the prognostic significance of miR-21. miR-21 expression in primary cultures correlated with expression in their respective tissues and with gemcitabine resistance. Pre-miR-21 transfection significantly decreased antiproliferative effects and apoptosis induction by gemcitabine, whereas matrix metalloproteinase (MMP)-2/MMP-9 and vascular endothelial growth factor expression were upregulated. Addition of inhibitors of phosphoinositide 3-kinase and mammalian target of rapamycin resulted in decrease of phospho-Akt and prevented pre-miR-21-induced resistance to the proapoptotic effects of gemcitabine. miR-21 expression correlated with outcome in PDAC patients treated with gemcitabine. Modulation of apoptosis, Akt phosphorylation, and expression of genes involved in invasive behavior may contribute to the role of miR-21 in gemcitabine chemoresistance and to the rational development of new targeted combinations.


PLOS ONE | 2010

Identification of MicroRNA-21 as a Biomarker for Chemoresistance and Clinical Outcome Following Adjuvant Therapy in Resectable Pancreatic Cancer

Jin-Hyeok Hwang; Johannes Voortman; Elisa Giovannetti; Seth M. Steinberg; Leticia G. Leon; Yong-Tae Kim; Niccola Funel; Joo Kyung Park; Min A Kim; Gyeong Hoon Kang; Sun-Whe Kim; Marco Del Chiaro; Godefridus J. Peters; Giuseppe Giaccone

Background Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The high risk of recurrence following surgical resection provides the rationale for adjuvant therapy. However, only a subset of patients benefit from adjuvant therapy. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of novel candidate biomarkers, including microRNAs, can predict clinical outcome in PDAC patients treated with adjuvant therapy. Methodology/Principal Findings Formalin-fixed paraffin embedded specimens from a cohort of 82 resected Korean PDAC cases were analyzed for protein expression by immunohistochemistry and for microRNA expression using quantitative Real-Time PCR. Cox proportional hazards model analysis in the subgroup of patients treated with adjuvant therapy (N = 52) showed that lower than median miR-21 expression was associated with a significantly lower hazard ratio (HR) for death (HR = 0.316; 95%CI = 0.166–0.600; P = 0.0004) and recurrence (HR = 0.521; 95%CI = 0.280–0.967; P = 0.04). MiR-21 expression status emerged as the single most predictive biomarker for treatment outcome among all 27 biological and 9 clinicopathological factors evaluated. No significant association was detected in patients not treated with adjuvant therapy. In an independent validation cohort of 45 frozen PDAC tissues from Italian cases, all treated with adjuvant therapy, lower than median miR-21 expression was confirmed to be correlated with longer overall as well as disease-free survival. Furthermore, transfection with anti-miR-21 enhanced the chemosensitivity of PDAC cells. Conclusions Significance Low miR-21 expression was associated with benefit from adjuvant treatment in two independent cohorts of PDAC cases, and anti-miR-21 increased anticancer drug activity in vitro. These data provide evidence that miR-21 may allow stratification for adjuvant therapy, and represents a new potential target for therapy in PDAC.


Clinical Cancer Research | 2008

Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients.

Carmelo Tibaldi; Elisa Giovannetti; Enrico Vasile; Valentina Mey; Adrie C. Laan; Sara Nannizzi; Roberta Di Marsico; A. Antonuzzo; Cinzia Orlandini; Simona Ricciardi; Mario Del Tacca; Godefridus J. Peters; Alfredo Falcone; Romano Danesi

Purpose: Selecting patients according to key genetic characteristics may help to tailor chemotherapy and optimize the treatment in non–small cell lung cancer (NSCLC). Polymorphisms at the xeroderma pigmentosum group D (XPD), excision repair cross-complementing 1 (ERCC1), and cytidine deaminase (CDA) genes have been associated with alterations in enzymatic activity and may change sensitivity to the widely used cisplatin-gemcitabine regimen. Experimental Design: Analyses of CDA, XPD, and ERCC1 polymorphisms were done on blood samples of 65 chemotherapy-naïve, advanced NSCLC patients treated with cisplatin-gemcitabine. Furthermore, CDA enzymatic activity was evaluated by high-performance liquid chromatography analysis. Association between XPD Asp312Asn and Lys751Gln, ERCC1 C118T, and CDA Lys27Gln polymorphisms and response, clinical benefit, toxicity, time to progression (TTP), and overall survival (OS) was estimated using Pearsons χ2 tests, the Kaplan-Meier method, the log-rank test, and the Cox proportional hazards model. Results: The CDA Lys27Lys polymorphism significantly correlated with better clinical benefit (P = 0.04) and grade ≥3 neutropenia and thrombocytopenia, as well as with longer TTP and OS (P = 0.006 and P = 0.002, respectively), whereas no significant associations were found among ERCC1 and XPD polymorphisms and both response and clinical outcome. Finally, the enzymatic activity assay showed a significant lower mean in subjects harboring the CDA Lys27Lys polymorphism. Conclusions: Our data suggested the role of CDA Lys27Lys polymorphism as a possible predictive marker of activity, toxicity, TTP, and OS in advanced NSCLC patients treated with cisplatin and gemcitabine. These results may be explained by the lower enzymatic activity associated with the Lys27Lys CDA and offer a potential new tool for treatment optimization.


Molecular Pharmacology | 2008

Molecular Mechanisms Underlying the Synergistic Interaction of Erlotinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, with the Multitargeted Antifolate Pemetrexed in Non-Small-Cell Lung Cancer Cells

Elisa Giovannetti; Clara Lemos; Christina Tekle; Kees Smid; Sara Nannizzi; Jose Antonio Rodriguez; Simona Ricciardi; Romano Danesi; Giuseppe Giaccone; Godefridus J. Peters

Because the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and the multitargeted antifolate pemetrexed are registered in the treatment of second-line non-small-cell lung cancer (NSCLC), empirical combinations of these drugs are being tested. This study investigated molecular mechanisms underlying their combination in six NSCLC cell lines. Cells were characterized by heterogeneous expression of pemetrexed determinants, including thymidylate synthase (TS) and dihydrofolate reductase (DHFR), and mutations potentially affecting chemosensitivity. Pharmacological interaction was studied using the combination index (CI) method, whereas cell cycle, apoptosis induction, and EGFR, extracellular signal-regulated kinases 1 and 2, and Akt phosphorylation were studied by flow cytometry, fluorescence microscopy, and enzyme-linked immunosorbent assays. Reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and activity assays were performed to assess whether erlotinib influenced TS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that EGFR and k-Ras mutations were related to erlotinib sensitivity, whereas TS and DHFR expression were related to pemetrexed sensitivity. Synergistic cytotoxicity was found in all cells, most pronounced with pemetrexed + erlotinib (24 h) → erlotinib (48 h) sequence (CI, 0.09-0.40), which was associated with a significant induction of apoptosis. Pemetrexed increased EGFR phosphorylation and reduced Akt phosphorylation, which was additionally reduced by drug combination (-70.6% in H1650). Erlotinib significantly reduced TS expression and activity, possibly via E2F-1 reduction, as detected by RT-PCR and Western blot, and the combination decreased TS in situ activity in all cells. Erlotinib and pemetrexed showed a strong synergism in NSCLC cells, regardless of their genetic characteristics. Induction of apoptosis, modulation of EGFR and Akt phosphorylation, and changes in the expression of critical genes involved in pemetrexed activity contribute to this synergistic interaction and support the clinical investigation of these markers.


Clinical Cancer Research | 2004

Synergistic cytotoxicity and pharmacogenetics of gemcitabine and pemetrexed combination in pancreatic cancer cell lines

Elisa Giovannetti; Valentina Mey; Romano Danesi; Irene Mosca; Mario Del Tacca

Purpose: Gemcitabine is an inhibitor of ribonucleotide reductase (RR) and DNA synthesis and is an effective agent in the treatment of pancreas cancer. The present study investigates whether the multitargeted antifolate pemetrexed would be synergistic with gemcitabine against MIA PaCa-2, PANC-1, and Capan-1 pancreatic cancer cell lines. Experimental Design: Cells were treated with gemcitabine and pemetrexed, and the type of drug interaction was assessed using the combination index. Cytotoxicity of gemcitabine was examined with inhibitors of (a) deoxycytidine kinase (dCK), which activates gemcitabine by phosphorylation, and (b) 5′-nucleotidase (drug dephosphorylation) and cytidine deaminase (drug deamination), the main inactivating enzymes. The effects of gemcitabine and pemetrexed on cell cycle were analyzed by flow cytometry, and apoptosis was examined by fluorescence microscopy. Finally, quantitative, real-time PCR was used to study the pharmacogenetics of the drug combination. Results: Synergistic cytotoxicity and enhancement of apoptosis was demonstrated, mostly with the sequence pemetrexed→gemcitabine. Pemetrexed increased cells in S phase, the most sensitive to gemcitabine, and a positive correlation was found between the expression ratio of dCK:RR and gemcitabine sensitivity. Indeed, pemetrexed significantly enhanced dCK gene expression (+227.9, +86.0, and +135.5% in MIA PaCa-2, PANC-1, and Capan-1 cells, respectively), and the crucial role of this enzyme was confirmed by impairment of gemcitabine cytotoxicity after dCK saturation with 2′-deoxycytidine. Conclusions: These data demonstrate that the gemcitabine and pemetrexed combination displays schedule-dependent synergistic cytotoxic activity, favorably modulates cell cycle, induces apoptosis, and enhances dCK expression in pancreatic cancer cells.


Molecular Cancer Therapeutics | 2006

Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer

Elisa Giovannetti; Valentina Mey; Sara Nannizzi; Giuseppe Pasqualetti; Mario Del Tacca; Romano Danesi

Chemotherapy has produced unsatisfactory results in pancreas cancer and novel approaches, including treatment tailoring by pharmacogenetic analysis and new molecular-targeted drugs, are required. The scarcity of effective therapies may reflect the lack of knowledge about the influence of tumor-related molecular abnormalities on responsiveness to drugs. Advances in the understanding of pancreas cancer biology have been made over the past decade, including the discovery of critical mutations in oncogenes (i.e., K-Ras) as well as the loss of tumor suppressor genes, such as TP53 and p16INK4. Other studies showed the dysregulation of the expression of proteins involved in the control of cell cycle, proliferation, apoptosis, and invasiveness, such as Bcl-2, Akt, mdm2, and epidermal growth factor receptor. These characteristics might contribute to the aggressive behavior of pancreatic cancer and influence response to treatment. Indeed, the inactivation of p53 may explain the relative resistance to 5-fluorouracil, whereas Bcl-2 overexpression is associated with reduced sensitivity to gemcitabine. However, the future challenge of pancreas cancer chemotherapy relies on the identification of molecular markers that help in the selection of drugs best suited to the individual patient. Recent pharmacogenetic studies focused on genes encoding proteins directly involved in drug activity, showing the role of thymidylate synthase and human equilibrative nucleoside transporter-1 as prognostic factor in 5-fluorouracil- and gemcitabine-treated patients, respectively. Finally, inhibitors of signal transduction and angiogenesis are under extensive investigation, and several prospective trials have been devoted to this area. Pharmacogenetics is likely to play a central role in the personalization of treatment, to stratify patients based on their likelihood of response to both standard agents (i.e., gemcitabine/nucleoside transporters) and targeted treatments (i.e., epidermal growth factor receptor gene mutations and/or amplification and tyrosine kinase inhibitors), Thus, molecular analysis should be implemented in the optimal management of the patient affected by pancreatic adenocarcinoma. [Mol Cancer Ther 2006;5(6):1387–95] [Mol Cancer Ther 2006;5(6):1387-95]


Critical Reviews in Oncology Hematology | 2012

Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice

Elisa Giovannetti; Ayse Erozenci; Jorn Smit; Romano Danesi; Godefridus J. Peters

Drug resistance remains a major problem in the treatment of cancer patients for both conventional chemotherapeutic and novel biological agents. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) changes, drug resistance mechanisms might also be regulated by microRNAs (miRNAs). In this review we provide an overview on the role of miRNAs in anticancer drug resistance, reporting the main studies on alterations in cell survival and/or apoptosis pathways, as well as in drug targets and determinants of drug metabolism, mediated by deregulation of miRNA expression. The current status of pharmacogenetic studies on miRNA and their possible role in cancer stem cell drug resistance are also discussed. Finally, we integrated the preclinical data with clinical evidences, in lung and pancreatic cancers, showing how the study of miRNAs could help to predict resistance of individual tumours to different anticancer drugs, and guide the oncologists in the selection of rationally based tailor-made treatments.


Gastroenterology | 2014

MicroRNAs Cooperatively Inhibit a Network of Tumor Suppressor Genes to Promote Pancreatic Tumor Growth and Progression

Adam E. Frampton; Leandro Castellano; Teresa Colombo; Elisa Giovannetti; Jonathan Krell; Jimmy Jacob; Loredana Pellegrino; Laura Roca-Alonso; Niccola Funel; Tamara Mh Gall; Alexander de Giorgio; Filipa G. Pinho; Valerio Fulci; David Britton; Raida Ahmad; Nagy Habib; R. Charles Coombes; Victoria Harding; Thomas Knösel; Justin Stebbing; Long R. Jiao

BACKGROUND & AIMS There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes. METHODS We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis. RESULTS We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection. CONCLUSIONS In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.


World journal of clinical oncology | 2011

Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

Fleur Broekman; Elisa Giovannetti; Godefridus J. Peters

Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.


Clinical Cancer Research | 2010

A Multicenter Phase II Study of Erlotinib and Sorafenib in Chemotherapy-Naive Patients with Advanced Non-Small Cell Lung Cancer

Joline S.W. Lind; Anne-Marie C. Dingemans; Harry J.M. Groen; Frederik B. Thunnissen; Otto Bekers; Daniëlle A.M. Heideman; Richard J. Honeywell; Elisa Giovannetti; Godefridus J. Peters; Pieter E. Postmus; Robert-Jan van Suylen; Egbert F. Smit

Purpose: This multicenter, phase II study evaluates the efficacy and safety of erlotinib, an epidermal growth factor receptor (EGFR) inhibitor, plus sorafenib, a multityrosine kinase inhibitor against vascular endothelial growth factor receptors, in patients with previously untreated advanced non–small cell lung cancer (NSCLC). Experimental Design: Chemotherapy-naïve patients with stage IIIB/IV NSCLC received erlotinib (150 mg once a day) and sorafenib (400 mg twice a day) until disease progression or unacceptable toxicity. The primary end point was the rate of nonprogression at 6 weeks. Secondary end points included objective response rate (ORR), time to progression, overall survival, and adverse events. Exploratory end points included pretreatment EGFR and KRAS mutation status, pharmacokinetics, and cytochrome P450 polymorphisms. Results: Fifty patients initiated therapy. The nonprogression rate at 6 weeks was 74%: 12 (24%) partial response and 25 (50%) stable disease. Ultimately, the ORR was 28%. Median time to progression was 5.0 months [95% confidence interval (95% CI), 3.2-6.8 months]. Median overall survival was 10.9 months (95% CI, 3.8-18.1 months). Grade 3/4 adverse events included fatigue (16%), hand-foot skin reaction (16%), rash (16%), diarrhea (14%), and hypophosphatemia (42%). There was one treatment-related fatal pulmonary hemorrhage. Patients with wild-type EGFR had a higher ORR (19%) than previously reported for single-agent erlotinib/sorafenib. Erlotinib levels were lowered. This was associated with CYP3A4 polymorphism and was possibly due to sorafenib. Conclusion: Despite a possible drug interaction, sorafenib plus erlotinib has promising clinical activity in patients with stage IIIB/IV NSCLC and has an acceptable safety profile. Further evaluation of this combination as potential salvage therapy in EGFR mutation–negative patients and the possible drug interaction is warranted. Clin Cancer Res; 16(11); 3078–87. ©2010 AACR.

Collaboration


Dive into the Elisa Giovannetti's collaboration.

Top Co-Authors

Avatar

Godefridus J. Peters

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geert Kazemier

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard J. Honeywell

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge