Elisa Lascaro
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Lascaro.
Science of The Total Environment | 2014
Sara Rinaldi; Marco Barbanera; Elisa Lascaro
The cradle to grave carbon footprint (CF) and energy footprint (EF) analysis of extra virgin olive oil (EVOO) produced in the Province of Perugia (Umbria, Italy) is assessed. In this study, olive orchard cultivation, EVOO extraction, bottling, packaging, storage at -18°C and distribution in the main importing countries were studied from a life cycle assessment perspective, with the main objective of identifying the processes with the largest environmental impacts. The selected functional unit was 1L of EVOO, packaged for distribution. Inventory data was gathered mainly through both direct communication using questionnaires and direct measurements. To determine the CF the ISO/TS 14067:2013 was followed while the EF was evaluated according to ISO standards 14040 and 14044. Results showed that the most impacting process is the distribution, mainly due to the choice of employing air transport. The main other hot spots identified were the olive orchard fertilization, EVOO freezing during its storage at the olive mill factory and the manufacture of glass bottles. Suggested improvement opportunities included shifts in the EVOO transportation policy, the introduction of lighter glass bottles in the bottling process, the use of cooling agent with lower global warming potential and the employment of biodiesel in the farming machineries.
Bioresource Technology | 2016
Cinzia Buratti; Soraya Sadat Mousavi; Marco Barbanera; Elisa Lascaro; Franco Cotana; Marina Bufacchi
The kinetic behaviour of olive tree pruning (PR), two- (2PH) and three-phase (3PH) olive pomace and their blends was investigated under combustion condition using thermogravimetric analysis. PR was blended with 2PH and 3PH at different ratios (25:75, 50:50 and 75:25) and tested in the temperature range from ambient to 1000°C in order to evaluate the co-combustion behaviour. Results showed that the thermal degradation of all samples can be divided into three regions (drying, devolatilisation, char oxidation) with different combustion properties, depending on the percentage of PR. Significant interaction was detected between the fuels, and reactivity of 2PH and 3PH was improved upon blending with PR. The iso-conversional methods, Ozawa-Flynn-Wall and Vyazovkin, were employed for the kinetic analysis of the oxidation process. The results revealed that the activation energy of PR was higher than the one of 2PH and 3PH, and the minimum value was obtained for 25PR752PH sample.
Bioresource Technology | 2015
Franco Cotana; Cinzia Buratti; Marco Barbanera; Elisa Lascaro
Fermentable sugars production from three kind of steam-exploded oak wood was optimized by Response Surface Methodology (RSM), using the severity factor (R0), the pretreated total solids (TS%) and the enzyme loading (EL%) as variables of a central composite design. A total of 17 experiments for each biomass were carried out. The optimal conditions established with RSM were: severity, 4.46 for holm, 4.03 for turkey oak and 3.92 for downey oak; total solids, 5.4% for holm, 5.0% for turkey oak and 12.7% for downey oak; and enzyme concentration, 9.6% for holm, 15.0% for turkey oak and 15.0% for downey oak. Under these conditions, the model predicted an overall sugar yield of 67.1% for holm, 79.9% for turkey oak and 68.4% for downey oak. The results of the confirmation experiments under optimal conditions agreed well with model predictions. Oak wood species may be a good feedstock for the production of reducing sugars.
Waste Management | 2017
Cinzia Buratti; Marco Barbanera; Elisa Lascaro; Franco Cotana
The aim of the present study is to analyze the influence of independent process variables such as temperature, residence time, and heating rate on the torrefaction process of coffee chaff (CC) and spent coffee grounds (SCGs). Response surface methodology and a three-factor and three-level Box-Behnken design were used in order to evaluate the effects of the process variables on the weight loss (WL) and the Higher Heating Value (HHV) of the torrefied materials. Results showed that the effects of the three factors on both responses were sequenced as follows: temperature>residence time>heating rate. Data obtained from the experiments were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial models by using multiple regression analysis. Predictive models were determined, able to obtain satisfactory fittings of the experimental data, with coefficient of determination (R2) values higher than 0.95. An optimization study using Derringers desired function methodology was also carried out and the optimal torrefaction conditions were found: temperature 271.7°C, residence time 20min, heating rate 5°C/min for CC and 256.0°C, 20min, 25°C/min for SCGs. The experimental values closely agree with the corresponding predicted values.
Renewable Energy | 2016
Marco Barbanera; Elisa Lascaro; Vitale Stanzione; Alessandro Esposito; Roberto Altieri; M. Bufacchi
Environmental Progress | 2015
Cinzia Buratti; Marco Barbanera; Elisa Lascaro
Energy Procedia | 2015
Franco Cotana; Marco Barbanera; Daniele Foschini; Elisa Lascaro; Cinzia Buratti
Sustainability | 2014
Cinzia Buratti; Elisa Lascaro; Domenico Palladino; Marco Vergoni
Construction and Building Materials | 2017
Paola Ricciardi; F. Torchia; Elisa Belloni; Elisa Lascaro; Cinzia Buratti
Energy Procedia | 2016
Cinzia Buratti; Elisa Belloni; Elisa Lascaro; Giovanna Anna Lopez; Paola Ricciardi