Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa M. Nevalainen is active.

Publication


Featured researches published by Elisa M. Nevalainen.


The EMBO Journal | 2006

Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: implications in motility

Emmanuèle Helfer; Elisa M. Nevalainen; Perttu Naumanen; Stéphane Romero; Dominique Didry; Dominique Pantaloni; Pekka Lappalainen; Marie-France Carlier

Twinfilins are conserved actin‐binding proteins composed of two actin depolymerizing factor homology (ADF‐H) domains. Twinfilins are involved in diverse morphological and motile processes, but their mechanism of action has not been elucidated. Here, we show that mammalian twinfilin both sequesters ADP‐G‐actin and caps filament barbed ends with preferential affinity for ADP‐bound ends. Twinfilin replaces capping protein and promotes motility of N‐WASP functionalized beads in a biomimetic motility assay, indicating that the capping activity supports twinfilins function in motility. Consistently, in vivo twinfilin localizes to actin tails of propelling endosomes. The ADP‐actin‐sequestering activity cooperates with the filament capping activity of twinfilin to finely regulate motility due to processive filament assembly catalyzed by formin‐functionalized beads. The isolated ADF‐H domains do not cap barbed ends nor promote motility, but sequester ADP‐actin, the C‐terminal domain showing the highest affinity. A structural model for binding of twinfilin to barbed ends is proposed based on the similar foldings of twinfilin ADF‐H domains and gelsolin segments.


Journal of Biological Chemistry | 2006

Formins regulate actin filament flexibility through long range allosteric interactions

Beáta Bugyi; Gábor Papp; Gábor Hild; Dénes Lõrinczy; Elisa M. Nevalainen; Pekka Lappalainen; Béla Somogyi; Miklós Nyitrai

The members of the formin family nucleate actin polymerization and play essential roles in the regulation of the actin cytoskeleton during a wide range of cellular and developmental processes. In the present work, we describe the effects of mDia1-FH2 on the conformation of actin filaments by using a temperature-dependent fluorescence resonance energy transfer method. Our results revealed that actin filaments were more flexible in the presence than in the absence of formin. The effect strongly depends on the mDia1-FH2 concentration in a way that indicates that more than one mechanism is responsible for the formin effect. In accordance with the more flexible filament structure, the thermal stability of actin decreased and the rate of phosphate dissociation from actin filaments increased in the presence of formin. The interpretation of the results supports a model in which formin binding to barbed ends makes filaments more flexible through long range allosteric interactions, whereas binding of formin to the sides of the filaments stabilizes the protomer-protomer interactions. These results suggest that formins can regulate the conformation of actin filaments and may thus also modulate the affinity of actin-binding proteins to filaments nucleated/capped by formins.


Genome Biology | 2012

Novel origins of copy number variation in the dog genome

Jonas Berglund; Elisa M. Nevalainen; Anna-Maja Molin; Michele Perloski; Catherine André; Michael C. Zody; Ted Sharpe; Christophe Hitte; Kerstin Lindblad-Toh; Hannes Lohi; Matthew T. Webster

BackgroundCopy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves.ResultsWe use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints.ConclusionsA number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.


PLOS ONE | 2009

MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear

Agnieszka K. Rzadzinska; Elisa M. Nevalainen; Haydn M. Prosser; Pekka Lappalainen; Karen P. Steel

In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase.


Biochemical Journal | 2009

Two biochemically distinct and tissue-specific twinfilin isoforms are generated from the mouse Twf2 gene by alternative promoter usage

Elisa M. Nevalainen; Aneta Skwarek-Maruszewska; Attila Braun; Markus Moser; Pekka Lappalainen

Twf (twinfilin) is an evolutionarily conserved regulator of actin dynamics composed of two ADF-H (actin-depolymerizing factor homology) domains. Twf binds actin monomers and heterodimeric capping protein with high affinity. Previous studies have demonstrated that mammals express two Twf isoforms, Twf1 and Twf2, of which at least Twf1 also regulates cytoskeletal dynamics by capping actin filament barbed-ends. In the present study, we show that alternative promoter usage of the mouse Twf2 gene generates two isoforms, which differ from each other only at their very N-terminal region. Of these isoforms, Twf2a is predominantly expressed in non-muscle tissues, whereas expression of Twf2b is restricted to heart and skeletal muscle. Both proteins bind actin monomers and capping protein, as well as efficiently capping actin filament barbed-ends. However, the N-terminal ADF-H domain of Twf2b interacts with ADP-G-actin with a 5-fold higher affinity than with ATP-G-actin, whereas the corresponding domain of Twf2a binds ADP-G-actin and ATP-G-actin with equal affinities. Taken together, these results show that, like Twf1, mouse Twf2 is a filament barbed-end capping protein, and that two tissue-specific and biochemically distinct isoforms are generated from the Twf2 gene through alternative promoter usage.


Biophysical Journal | 2009

The Effects of ADF/Cofilin and Profilin on the Conformation of the ATP-Binding Cleft of Monomeric Actin

Roland Kardos; Kinga Pozsonyi; Elisa M. Nevalainen; Pekka Lappalainen; Miklós Nyitrai; Gábor Hild

Actin depolymerizing factor (ADF)/cofilin and profilin are small actin-binding proteins, which have central roles in cytoskeletal dynamics in all eukaryotes. When bound to an actin monomer, ADF/cofilins inhibit the nucleotide exchange, whereas most profilins accelerate the nucleotide exchange on actin monomers. In this study the effects of ADF/cofilin and profilin on the accessibility of the actin monomers ATP-binding pocket was investigated by a fluorescence spectroscopic method. The fluorescence of the actin bound epsilon-ATP was quenched with a neutral quencher (acrylamide) in steady-state and time dependent experiments, and the data were analyzed with a complex form of the Stern-Volmer equation. The experiments revealed that in the presence of ADF/cofilin the accessibility of the bound epsilon-ATP decreased, indicating a closed and more compact ATP-binding pocket induced by the binding of ADF/cofilin. In the presence of profilin the accessibility of the bound epsilon-ATP increased, indicating a more open and approachable protein matrix around the ATP-binding pocket. The results of the fluorescence quenching experiments support a structural mechanism regarding the regulation of the nucleotide exchange on actin monomers by ADF/cofilin and profilin.


Biochimica et Biophysica Acta | 2013

The effect of ADF/cofilin and profilin on the dynamics of monomeric actin

Roland Kardos; Elisa M. Nevalainen; Miklós Nyitrai; Gábor Hild

The main goal of the work was to uncover the dynamical changes in actin induced by the binding of cofilin and profilin. The change in the structure and flexibility of the small domain and its function in the thermodynamic stability of the actin monomer were examined with fluorescence spectroscopy and differential scanning calorimetry (DSC). The structure around the C-terminus of actin is slightly affected by the presence of cofilin and profilin. Temperature dependent fluorescence resonance energy transfer measurements indicated that both actin binding proteins decreased the flexibility of the protein matrix between the subdomains 1 and 2. Time resolved anisotropy decay measurements supported the idea that cofilin and profilin changed similarly the dynamics around the fluorescently labeled Cys-374 and Lys-61 residues in subdomains 1 and 2, respectively. DSC experiments indicated that the thermodynamic stability of actin increased by cofilin and decreased in the presence of profilin. Based on the information obtained it is possible to conclude that while the small domain of actin acts uniformly in the presence of cofilin and profilin the overall stability of actin changes differently in the presence of the studied actin binding proteins. The results support the idea that the small domain of actin behaves as a rigid unit during the opening and closing of the nucleotide binding pocket in the presence of profilin and cofilin as well. The structural arrangement of the nucleotide binding cleft mainly influences the global stability of actin while the dynamics of the different segments can change autonomously.


PLOS ONE | 2011

Twinfilin-2a Is Dispensable for Mouse Development

Elisa M. Nevalainen; Attila Braun; Maria K. Vartiainen; Martina Serlachius; Leif C. Andersson; Markus Moser; Pekka Lappalainen

Twinfilins are evolutionarily conserved regulators of cytoskeletal dynamics. They inhibit actin polymerization by binding both actin monomers and filament barbed ends. Inactivation of the single twinfilin gene from budding yeast and fruit fly results in defects in endocytosis, cell migration, and organization of the cortical actin filament structures. Mammals express three twinfilin isoforms, of which twinfilin-1 and twinfilin-2a display largely overlapping expression patterns in non-muscle tissues of developing and adult mice. The expression of twinfilin-2b, which is generated through alternative promoter usage of the twinfilin-2 gene, is restricted to heart and skeletal muscles. However, the physiological functions of mammalian twinfilins have not been reported. As a first step towards understanding the function of twinfilin in vertebrates, we generated twinfilin-2a deficient mice by deleting exon 1 of the twinfilin-2 gene. Twinfilin-2a knockout mice developed normally to adulthood, were fertile, and did not display obvious morphological or behavioural abnormalities. Tissue anatomy and morphology in twinfilin-2a deficient mice was similar to that of wild-type littermates. These data suggest that twinfilin-2a plays a redundant role in cytoskeletal dynamics with the biochemically similar twinfilin-1, which is typically co-expressed in same tissues with twinfilin-2a.


Archive | 2007

Twinfilin Family of Actin Monomer-Binding Proteins

Elisa M. Nevalainen; Ville O. Paavilainen; Pekka Lappalainen

Twinfilin family actin monomer-binding proteins are conserved in evolution from yeasts to mammals. They bind ADP-actin monomers with high affinity and prevent the assembly of actin monomers into filament ends. In addition to monomeric actin, twinfilins also bind and cap actin filament barbed ends, and interact direcdy with heterodimeric capping proteins. Interaction with capping protein is necessary for twinfilins localization to the cortical actin cytoskeleton at least in budding yeast. Genetic studies on yeast and Drosophila demonstrate that twinfilin is intimately involved in the regulation of actin dynamics in cells, and that the lack of twinfilin results in uncontrolled actin filament assembly. Together, these data suggest that twinfilins play an important role in actin dynamics by preventing unwanted actin filament assembly in cells. However, the exact mechanism by which twinfilin regulates actin filament turnover and contributes to actin-dependent cellular processes remains to be elucidated.


BMC Genomics | 2015

Identification of a common risk haplotype for canine idiopathic epilepsy in the ADAM23 gene

Lotta L. E. Koskinen; Eija H. Seppälä; Janelle M. Belanger; Meharji Arumilli; Osmo Hakosalo; Päivi Jokinen; Elisa M. Nevalainen; Ranno Viitmaa; Tarja S. Jokinen; Anita M. Oberbauer; Hannes Lohi

Collaboration


Dive into the Elisa M. Nevalainen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Lohi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge