Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Hild is active.

Publication


Featured researches published by Gábor Hild.


FEBS Letters | 2005

A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide

Balázs Visegrády; D. Lőrinczy; Gábor Hild; Béla Somogyi; Miklós Nyitrai

The stabilisation of magnesium actin filaments by phalloidin and jasplakinolide was studied using the method of differential scanning calorimetry. The results showed that actin could adapt three conformations in the presence of drugs. One conformation was adapted in direct interaction with the drug, while another conformation was identical to that observed in the absence of drugs. A third conformation was induced through allosteric inter‐protomer interactions. The effect of both drugs propagated cooperatively along the actin filaments. The number of the cooperative units determined by using a quantitative model was larger for jasplakinolide (15 actin protomers) than for phalloidin (7 protomers).


FEBS Letters | 2004

The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments

Balázs Visegrády; D. Lőrinczy; Gábor Hild; Béla Somogyi; Miklós Nyitrai

In this work the effect of phalloidin and jasplakinolide on the dynamic properties and thermal stability of actin filaments was studied. Temperature dependent fluorescence resonance energy transfer measurements showed that filaments of Ca‐actin became more rigid in the presence of phalloidin or jasplakinolide. Differential scanning calorimetric data implied that the stiffer filaments also had greater thermal stability in the presence of phalloidin or jasplakinolide. The fluorescence and calorimetric measurements provided evidences that the extent of stabilization by jasplakinolide was greater than that by phalloidin.


Journal of Biological Chemistry | 2006

Formins regulate actin filament flexibility through long range allosteric interactions

Beáta Bugyi; Gábor Papp; Gábor Hild; Dénes Lõrinczy; Elisa M. Nevalainen; Pekka Lappalainen; Béla Somogyi; Miklós Nyitrai

The members of the formin family nucleate actin polymerization and play essential roles in the regulation of the actin cytoskeleton during a wide range of cellular and developmental processes. In the present work, we describe the effects of mDia1-FH2 on the conformation of actin filaments by using a temperature-dependent fluorescence resonance energy transfer method. Our results revealed that actin filaments were more flexible in the presence than in the absence of formin. The effect strongly depends on the mDia1-FH2 concentration in a way that indicates that more than one mechanism is responsible for the formin effect. In accordance with the more flexible filament structure, the thermal stability of actin decreased and the rate of phosphate dissociation from actin filaments increased in the presence of formin. The interpretation of the results supports a model in which formin binding to barbed ends makes filaments more flexible through long range allosteric interactions, whereas binding of formin to the sides of the filaments stabilizes the protomer-protomer interactions. These results suggest that formins can regulate the conformation of actin filaments and may thus also modulate the affinity of actin-binding proteins to filaments nucleated/capped by formins.


Cytoskeleton | 2010

Conformational dynamics of actin: Effectors and implications for biological function

Gábor Hild; Beáta Bugyi; Miklós Nyitrai

Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin‐binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.


Journal of Biological Chemistry | 1999

THE FLEXIBILITY OF ACTIN FILAMENTS AS REVEALED BY FLUORESCENCE RESONANCE ENERGY TRANSFER : THE INFLUENCE OF DIVALENT CATIONS

Miklós Nyitrai; Gábor Hild; József Belágyi; Béla Somogyi

The temperature profile of the fluorescence resonance energy transfer efficiency normalized by the fluorescence quantum yield of the donor in the presence of acceptor, f′, was measured in a way allowing the independent investigation of (i) the strength of interaction between the adjacent protomers (intermonomer flexibility) and (ii) the flexibility of the protein matrix within actin protomers (intramonomer flexibility). In both cases the relative increase as a function of temperature in f′ is larger in calcium-F-actin than in magnesium-F-actin in the range of 5–40 °C, which indicates that both the intramonomer and the intermonomer flexibility of the actin filaments are larger in calcium-F-actin than those in magnesium-F-actin. The intermonomer flexibility was proved to be larger than the intramonomer one in both the calcium-F-actin and the magnesium-F-actin. The distance between Gln41 and Cys374 residues was found to be cation-independent and did not change during polymerization at 21 °C. The steady-state fluorescence anisotropy data of fluorophores attached to the Gln41 or Cys374 residues suggest that the microenvironments around these regions are more rigid in the magnesium-loaded actin filament than in the calcium-loaded form.


European Journal of Cell Biology | 2014

The other side of the coin: Functional and structural versatility of ADF/cofilins

Gábor Hild; Lajos Kalmár; Roland Kardos; Miklós Nyitrai; Beáta Bugyi

Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.


Biophysical Journal | 2009

The Effects of ADF/Cofilin and Profilin on the Conformation of the ATP-Binding Cleft of Monomeric Actin

Roland Kardos; Kinga Pozsonyi; Elisa M. Nevalainen; Pekka Lappalainen; Miklós Nyitrai; Gábor Hild

Actin depolymerizing factor (ADF)/cofilin and profilin are small actin-binding proteins, which have central roles in cytoskeletal dynamics in all eukaryotes. When bound to an actin monomer, ADF/cofilins inhibit the nucleotide exchange, whereas most profilins accelerate the nucleotide exchange on actin monomers. In this study the effects of ADF/cofilin and profilin on the accessibility of the actin monomers ATP-binding pocket was investigated by a fluorescence spectroscopic method. The fluorescence of the actin bound epsilon-ATP was quenched with a neutral quencher (acrylamide) in steady-state and time dependent experiments, and the data were analyzed with a complex form of the Stern-Volmer equation. The experiments revealed that in the presence of ADF/cofilin the accessibility of the bound epsilon-ATP decreased, indicating a closed and more compact ATP-binding pocket induced by the binding of ADF/cofilin. In the presence of profilin the accessibility of the bound epsilon-ATP increased, indicating a more open and approachable protein matrix around the ATP-binding pocket. The results of the fluorescence quenching experiments support a structural mechanism regarding the regulation of the nucleotide exchange on actin monomers by ADF/cofilin and profilin.


Journal of Biological Chemistry | 2000

Conformational and Dynamic Differences between Actin Filaments Polymerized from ATP- or ADP-Actin Monomers

Miklós Nyitrai; Gábor Hild; Nóra Hartvig; József Belágyi; Béla Somogyi

Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys374 residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys374 from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys374 of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.


Journal of Biological Chemistry | 2012

Myosin and Tropomyosin Stabilize the Conformation of Formin-nucleated Actin Filaments

Zoltán Ujfalusi; Mihály Kovács; Nikolett T. Nagy; Szilvia Barkó; Gábor Hild; András Lukács; Miklós Nyitrai; Beáta Bugyi

Background: The regulation of the conformational dynamics of cellular actin structures is poorly understood. Results: Myosin and tropomyosin stabilize the conformation of formin-nucleated flexible actin filaments. Conclusion: Actin-binding proteins can play a central role in the establishment of the conformational properties of actin filaments. Significance: Our results add to our understanding of the mechanisms regulating the conformational and functional versatility of the actin cytoskeleton. The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.


Biophysical Journal | 2009

Effect of Tropomyosin on Formin-Bound Actin Filaments

Zoltán Ujfalusi; Andrea Vig; Gábor Hild; Miklós Nyitrai

Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly.

Collaboration


Dive into the Gábor Hild's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Lukács

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge