Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Maria Paola Ferro is active.

Publication


Featured researches published by Elisa Maria Paola Ferro.


Biochemical Journal | 2003

Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae

Lorenza Trabalzini; Alessandro Paffetti; Andrea Scaloni; Fabio Talamo; Elisa Maria Paola Ferro; Grazietta Coratza; Lucia Bovalini; Paola Lusini; Paola Martelli; Annalisa Santucci

We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identification, the proteins representing the S. cerevisiae proteomic response to fermentation stresses were divided into three classes: repressed proteins, induced proteins and autoproteolysed proteins. In an overall view, the proteome adaptation of S. cerevisiae at the time of glucose exhaustion seems to be directed mainly against the effects of ethanol, causing both hyperosmolarity and oxidative responses. Stress-induced autoproteolysis is directed mainly towards specific isoforms of glycolytic enzymes. Through the use of a wild-type S. cerevisiae strain and PMSF, a specific inhibitor of vacuolar proteinase B, we could also distinguish the specific contributions of the vacuole and the proteasome to the autoproteolytic process.


Cellular Signalling | 2010

RalGDS family members couple Ras to Ral signalling and that's not all.

Elisa Maria Paola Ferro; Lorenza Trabalzini

Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.


Journal of Signal Transduction | 2012

Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk?

Luca Goitre; Barbara Pergolizzi; Elisa Maria Paola Ferro; Lorenza Trabalzini; Saverio Francesco Retta

The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.


Journal of Signal Transduction | 2012

The Interplay between ROS and Ras GTPases: Physiological and Pathological Implications.

Elisa Maria Paola Ferro; Luca Goitre; Saverio Francesco Retta; Lorenza Trabalzini

The members of the RasGTPase superfamily are involved in various signaling networks responsible for fundamental cellular processes. Their activity is determined by their guanine nucleotide-bound state. Recent evidence indicates that some of these proteins may be regulated by redox agents. Reactive oxygen species (ROSs) and reactive nitrogen species (RNSs) have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that the intracellular production of ROS is tightly regulated and that these redox agents serve as signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some Ras GTPases appear to regulate ROS production and that oxidants function as effector molecules for the small GTPases, thus contributing to their overall biological function. Thus, redox agents may act both as upstream regulators and as downstream effectors of Ras GTPases. Here we discuss current understanding concerning mechanisms and physiopathological implications of the interplay between GTPases and redox agents.


PLOS ONE | 2012

Identification of the Kelch Family Protein Nd1-L as a Novel Molecular Interactor of KRIT1

Paolo Guazzi; Luca Goitre; Elisa Maria Paola Ferro; Valentina Cutano; Chiara Martino; Lorenza Trabalzini; Saverio Francesco Retta

Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease.


Plant Molecular Biology | 2013

The yeast two-hybrid and related methods as powerful tools to study plant cell signalling

Elisa Maria Paola Ferro; Lorenza Trabalzini

One basic property of proteins is their ability to specifically target and form non-covalent complexes with other proteins. Such protein–protein interactions play key roles in all biological processes, extending from the formation of cellular macromolecular structures and enzymatic complexes to the regulation of signal transduction pathways. Identifying and characterizing protein interactions and entire interaction networks (interactomes) is therefore prerequisite to understand these processes on a molecular and biophysical level. Since its original description in 1989, the yeast two-hybrid system has been extensively used to identify protein–protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. In these years the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches. Several groups studying molecular mechanisms that underlie plant cell signal transduction pathways have successfully used the yeast two-hybrid system or related methods. In this review we provide a brief description of the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas, within the plant cell signalling field, where hybrid-based interaction assays have been particularly informative.


Helicobacter | 2004

Inactivation of Helicobacter pylori cagA Gene Affects Motility

Natale Figura; Lorenza Trabalzini; Roberta Mini; Giulia Bernardini; Andrea Scaloni; Fabio Talamo; Paola Lusini; Elisa Maria Paola Ferro; Paola Martelli; Annalisa Santucci

Background.  The cytotoxin‐associated protein CagA is a Helicobacter pylori immunodominant antigen whose gene resides in the cag pathogenicity island. Our purpose was to determine if the disruption or deletion of cagA gene could have an effect on the expression of other proteins at the proteome level. We analyzed two H. pylori strains, 328 and G27 wild‐type, bearing the cag pathogenicity island, and their respective isogenic cagA− mutants.


Electrophoresis | 2000

Differences between predicted and observed sequences in Saccharomyces cerevisiae

Annalisa Santucci; Lorenza Trabalzini; Lucia Bovalini; Elisa Maria Paola Ferro; Paolo Neri; Paola Martelli

We recently studied the protein composition of a Saccharomyces cerevisiae wine yeast strain (K310) of enological interest. About 2500 spots of 8—250 kDa observed molecular mass were resolved by two‐dimensional gel electrophoresis. Experimental molecular masses and isoelectric points were calculated for most of them. Twenty‐seven proteins were subjected to Edman microsequencing. N‐terminal sequences of 12/27 proteins were determined, whereas internal sequences of 6/27 proteins were obtained following in situ proteolysis. Comparison between the experimental data and those reported in the SWISS‐PROT database revealed some differences between genotypic and phenotypic sequences. These are indicative of the changes a protein can undergo with respect to the primary structure coded by the genomic DNA. Our results highlight the need to complement genomic analysis with detailed proteomics in order to refine the vast amount of information provided by DNA sequencing and to find an exact correlation between genome and proteome.


Biochemistry | 2009

Humanin Structural versatility and interaction with model cerebral cortex membranes

Sara Pistolesi; Lara Rossini; Elisa Maria Paola Ferro; Riccardo Basosi; Lorenza Trabalzini; Rebecca Pogni

Humanin (HN) is a recently identified neuroprotective peptide able to inhibit neurotoxicity induced by various insults which can be related to Alzheimer disease (AD) as well as to cell death induced by other stimuli. Previous CD and NMR studies demonstrated that HN adopts an unordered conformation in water, a alpha-helix conformation in 30% TFE, and a beta-sheet structure in PBS. Furthermore, other studies clearly indicated HN as a secreted peptide, able to prevent neuronal cell death caused by amyloid beta (Abeta) derivatives. Although Abeta was found to interact with neuronal membranes, currently there is not experimental evidence unveiling HN interaction with membranes. In this paper a spin labeling technique coupled with electron paramagnetic resonance (EPR) and circular dichroism (CD) has been used to study the structure and dynamics of HN in solution and for the first time in the presence of model cerebral cortex membranes (CCM). We have demonstrated that HN has a great tendency to aggregate even at low concentrations in water solutions at different ionic strengths and monomerizes in the TFE apolar environment. We also showed that HN slightly perturbs model CCM at the surface assuming a clear beta-sheet conformation. In addition, HN increases the fluidity of the bilayer core without penetrating into the membrane.


Biochemical Journal | 2008

G-PROTEIN BINDING FEATURES AND REGULATION OF THE RALGDS FAMILY MEMBER, RGL2

Elisa Maria Paola Ferro; David Magrini; Paolo Guazzi; Thomas H. Fischer; Sara Pistolesi; Rebecca Pogni; Gilbert C. White; Lorenza Trabalzini

RGL2 [RalGDS (Ral guanine nucleotide dissociation stimulator)-like 2] is a member of the RalGDS family that we have previously isolated and characterized as a potential effector for Ras and the Ras analogue Rap1b. The protein shares 89% sequence identity with its mouse orthologue Rlf (RalGDS-like factor). In the present study we further characterized the G-protein-binding features of RGL2 and also demonstrated that RGL2 has guanine-nucleotide-exchange activity toward the small GTPase RalA. We found that RGL2/Rlf properties are well conserved between human and mouse species. Both RGL2 and Rlf have a putative PKA (protein kinase A) phosphorylation site at the C-terminal of the domain that regulates the interaction with small GTPases. We demonstrated that RGL2 is phosphorylated by PKA and phosphorylation reduces the ability of RGL2 to bind H-Ras. As RGL2 and Rlf are unique in the RalGDS family in having a PKA site in the Ras-binding domain, the results of the present study indicate that Ras may distinguish between the different RalGDS family members by their phosphorylation by PKA.

Collaboration


Dive into the Elisa Maria Paola Ferro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge