Elisa Motori
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Motori.
Molecular Cell | 2013
Anne Kathrin Müller-Rischart; Anna Pilsl; Patrick Beaudette; Maria Patra; Kamyar Hadian; Maria Funke; Regina Peis; Alexandra Deinlein; Carolin Schweimer; Peer-Hendrik Kuhn; Stefan F. Lichtenthaler; Elisa Motori; Silvana Hrelia; Wolfgang Wurst; Dietrich Trümbach; Thomas Langer; Daniel Krappmann; Gunnar Dittmar; Jörg Tatzelt; Konstanze F. Winklhofer
Parkin, a RING-between-RING-type E3 ubiquitin ligase associated with Parkinsons disease, has a wide neuroprotective activity, preventing cell death in various stress paradigms. We identified a stress-protective pathway regulated by parkin that links NF-κB signaling and mitochondrial integrity via linear ubiquitination. Under cellular stress, parkin is recruited to the linear ubiquitin assembly complex and increases linear ubiquitination of NF-κB essential modulator (NEMO), which is essential for canonical NF-κB signaling. As a result, the mitochondrial guanosine triphosphatase OPA1 is transcriptionally upregulated via NF-κB-responsive promoter elements for maintenance of mitochondrial integrity and protection from stress-induced cell death. Parkin-induced stress protection is lost in the absence of either NEMO or OPA1, but not in cells defective for the mitophagy pathway. Notably, in parkin-deficient cells linear ubiquitination of NEMO, activation of NF-κB, and upregulation of OPA1 are significantly reduced in response to TNF-α stimulation, supporting the physiological relevance of parkin in regulating this antiapoptotic pathway.
Neuron | 2015
Mateo Bergami; Silvio G. Temprana; Elisa Motori; Therese M. Eriksson; Jana Göbel; Sung Min Yang; Karl Kklaus Conzelmann; Alejandro F. Schinder; Magdalena Götz; Bunedikt Berninger
Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing.
Cell Metabolism | 2013
Elisa Motori; Julien Puyal; Nicolas Toni; Alexander Ghanem; Cristina Angeloni; Marco Malaguti; Giorgio Cantelli-Forti; Benedikt Berninger; Karl-Klaus Conzelmann; Magdalena Götz; Konstanze F. Winklhofer; Silvana Hrelia; Matteo Bergami
Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.
Journal of Cell Biology | 2015
Arnaud Mourier; Elisa Motori; Tobias Brandt; Marie Lagouge; Ilian Atanassov; Anne Galinier; Gunter Rappl; Susanne Brodesser; Kjell Hultenby; Christoph Dieterich; Nils-Göran Larsson
Mitofusin 2 plays an unexpected role in maintaining the terpenoid biosynthesis pathway and is necessary for mitochondrial coenzyme Q biosynthesis.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Cristina Angeloni; Elisa Motori; Daniele Fabbri; Marco Malaguti; Emanuela Leoncini; Antonello Lorenzini; Silvana Hrelia
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules and occurs in a biphasic pattern: an early phase after 1-2 h and a late phase after 12-24 h. While it is widely accepted that reactive oxygen species are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. The present study was designed to investigate the mechanisms behind H(2)O(2)-induced cardioprotection in rat neonatal cardiomyocytes. We focused on antioxidant and phase II enzymes and their modulation by protein kinase signaling pathways and nuclear-factor-E(2)-related factor-1 (Nrf1) and Nrf2. H(2)O(2) preconditioning was able to counteract oxidative stress more effectively in the late than in the early phase of adaptation. In particular, H(2)O(2) preconditioning counteracted oxidative stress-induced apoptosis by decreasing caspase-3 activity, increasing Bcl2 expression and selectively increasing the expression and activity of antioxidant and phase II enzymes through Nrf1 and Nrf2 translocation to the nucleus. The downregulation of Nrf1 and Nrf2 by small interfering RNA reduced the expression level of phase II enzymes. Specific inhibitors of phosphatidylinositol 3-kinase/Akt and p38 MAPK activation partially reduced the cardioprotection elicited by H(2)O(2) preconditioning and the induction and activity of phase II enzymes. These findings demonstrate, for the first time, a key role for Nrf1, and not only for Nrf2, in the induction of phase II enzymes triggered by H(2)O(2) preconditioning.
The EMBO Journal | 2014
Pontus Klein; Anne Kathrin Müller-Rischart; Elisa Motori; Cornelia Schönbauer; Frank Schnorrer; Konstanze F. Winklhofer; Rüdiger Klein
Parkinsons disease (PD)‐associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line‐derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin‐based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (RetMEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of RetMEN2B significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret‐mediated cell protection in a situation relevant for human PD.
Journal of Clinical Investigation | 2015
Durga Praveen Meka; Anne Kathrin Müller-Rischart; Prakash Nidadavolu; Behnam Mohammadi; Elisa Motori; Srinivas Kumar Ponna; Helia Aboutalebi; Mahmoud Bassal; Anil Annamneedi; Barbara Finckh; Margit Miesbauer; Natalie Rotermund; Christian Lohr; Jörg Tatzelt; Konstanze F. Winklhofer; Edgar R. Kramer
Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinsons disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Stéphane G. Rolland; Elisa Motori; Nadin Memar; Jürgen Hench; Stephan Frank; Konstanze F. Winklhofer; Barbara Conradt
Significance Mitochondria, the powerhouses of the cell, constantly change their shape by fusing and dividing. How these two opposite processes are controlled remains unclear. In our study, we identified the Caenorhabditis elegans homolog of the human mitochondrial protein LRPPRC (leucine-rich pentatricopeptide repeat containing), which has been previously associated with the neurodegenerative French Canadian Leigh Syndrome. Analysis of this protein revealed an evolutionary conserved pathway that regulates mitochondrial shape. Specifically, we show that mitochondria transiently form a highly connected network to compensate for a decrease of the activity of the complex IV of the electron transport chain. Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC–deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain.
PLOS Genetics | 2015
Marie Lagouge; Arnaud Mourier; Hyun Ju Lee; Henrik Spåhr; Timothy Wai; Christian Kukat; Eduardo Silva Ramos; Elisa Motori; Jakob D. Busch; Stefan J. Siira; Elisabeth Kremmer; Aleksandra Filipovska; Nils-Göran Larsson
We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50–70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.
Journal of Food Science | 2011
Emanuela Leoncini; Marco Malaguti; Cristina Angeloni; Elisa Motori; Daniele Fabbri; Silvana Hrelia
The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents.