Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Oppici is active.

Publication


Featured researches published by Elisa Oppici.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Molecular defects of the glycine 41 variants of alanine glyoxylate aminotransferase associated with primary hyperoxaluria type I

Barbara Cellini; Riccardo Montioli; Alessandro Paiardini; Antonio Lorenzetto; Fabio Maset; Tiziana Bellini; Elisa Oppici; Carla Borri Voltattorni

G41 is an interfacial residue located within the α-helix 34–42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for immunoreactivity deficiency, intraperoxisomal aggregation, and sensitivity to proteasomal degradation. However, no experimental evidence supports this view. Here we report that G41 mutations, besides increasing the dimer-monomer equilibrium dissociation constant, affect the protein conformation and stability, and perturb its active site. As compared to AGT-Ma or AGT-Mi, G41 variants display different near-UV CD and intrinsic emission fluorescence spectra, larger exposure of hydrophobic surfaces, sensitivity to Met53-Tyr54 peptide bond cleavage by proteinase K, decreased thermostability, reduced coenzyme binding affinity, and catalytic efficiency. Additionally, unlike AGT-Ma and AGT-Mi, G41 variants under physiological conditions form insoluble inactive high-order aggregates (∼5,000 nm) through intermolecular electrostatic interactions. A comparative molecular dynamics study of the putative structures of AGT-Mi and G41R-Mi predicts that G41 → R mutation causes a partial unwinding of the 34–42 α-helix and a displacement of the first 44 N-terminal residues including the active site loop 24–32. These simulations help us to envisage the possible structural basis of AGT dysfunction associated with G41 mutations. The detailed insight into how G41 mutations act on the structure-function of AGT may contribute to achieve the ultimate goal of correcting the effects of these mutations.


Molecular Genetics and Metabolism | 2012

Biochemical analyses are instrumental in identifying the impact of mutations on holo and/or apo-forms and on the region(s) of alanine:glyoxylate aminotransferase variants associated with primary hyperoxaluria type I.

Elisa Oppici; Riccardo Montioli; Antonio Lorenzetto; Silvia Bianconi; Carla Borri Voltattorni; Barbara Cellini

Primary Hyperoxaluria Type I (PH1) is a disorder of glyoxylate metabolism caused by mutations in the human AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5′-phosphate (PLP) dependent enzyme. Previous investigations highlighted that, although PH1 is characterized by a significant variability in terms of enzymatic phenotype, the majority of the pathogenic variants are believed to share both structural and functional defects, as mainly revealed by data on AGT activity and expression level in crude cellular extracts. However, the knowledge of the defects of the AGT variants at a protein level is still poor. We therefore performed a side-by-side comparison between normal AGT and nine purified recombinant pathogenic variants in terms of catalytic activity, coenzyme binding mode and affinity, spectroscopic features, oligomerization, and thermal stability of both the holo- and apo-forms. Notably, we chose four variants in which the mutated residues are located in the large domain of AGT either within the active site and interacting with the coenzyme or in its proximity, and five variants in which the mutated residues are distant from the active site either in the large or in the small domain. Overall, this integrated analysis of enzymatic activity, spectroscopic and stability information is used to (i) reassess previous data obtained with crude cellular extracts, (ii) establish which form(s) (i.e. holoenzyme and/or apoenzyme) and region(s) (i.e. active site microenvironment, large and/or small domain) of the protein are affected by each mutation, and (iii) suggest the possible therapeutic approach for patients bearing the examined mutations.


Biochimica et Biophysica Acta | 2015

Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

Elisa Oppici; Riccardo Montioli; Barbara Cellini

Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Proteins | 2013

Crystal structure of the S187F variant of human liver alanine: Aminotransferase associated with primary hyperoxaluria type I and its functional implications

Elisa Oppici; Krisztian Fodor; Alessandro Paiardini; Chris Williams; Carla Borri Voltattorni; Matthias Wilmanns; Barbara Cellini

The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′‐phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP‐binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT‐pyridoxamine 5′‐phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300‐ to 500‐fold decrease in both the rate constant of L‐alanine half‐transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465.


Human Molecular Genetics | 2014

S81L and G170R mutations causing Primary Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive interallelic complementation

Riccardo Montioli; Alessandro Roncador; Elisa Oppici; Giorgia Mandrile; Daniela Giachino; Barbara Cellini; Carla Borri Voltattorni

Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5′-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studied by approaches mimicking homozygous patients, whereas the molecular aspects of the genotype-enzymatic-clinical phenotype relationship in compound heterozygous patients are completely unknown. Here, for the first time, we elucidate the enzymatic phenotype linked to the S81L mutation on AGT-Ma, relative to a PLP-binding residue, and how it changes when the most common mutation G170R on AGT-Mi, known to cause AGT mistargeting without affecting the enzyme functionality, is present in the second allele. By using a bicistronic eukaryotic expression vector, we demonstrate that (i) S81L-Ma is mainly in its apo-form and has a significant peroxisomal localization and (ii) S81L and G170R monomers interact giving rise to the G170R-Mi/S81L-Ma holo-form, which is imported into peroxisomes and exhibits an enhanced functionality with respect to the parental enzymes. These data, integrated with the biochemical features of the heterodimer and the homodimeric counterparts in their purified recombinant form, (i) highlight the molecular basis of the pathogenicity of S81L-Ma and (ii) provide evidence for a positive interallelic complementation between the S81L and G170R monomers. Our study represents a valid approach to investigate the molecular pathogenesis of PH1 in compound heterozygous patients.


Human Molecular Genetics | 2015

Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I

Elisa Oppici; Sonia Fargue; Emma S. Reid; Philippa B. Mills; Peter Clayton; Christopher J. Danpure; Barbara Cellini

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


The Open Biochemistry Journal | 2012

Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview.

Barbara Cellini; Riccardo Montioli; Elisa Oppici; Carla Borri Voltattorni

Dopa decarboxylase (DDC) is a pyridoxal 5’-phosphate (PLP)-dependent enzyme that by catalyzing the decarboxylation of L-Dopa and L-5-hydroxytryptophan produces the neurotransmitters dopamine and serotonin. The functional properties of pig kidney and human DDC enzymes have been extensively characterized, and the crystal structure of the enzyme in the holo- and apo-forms has been elucidated. DDC is a clinically relevant enzyme since it is involved in Parkinson’s disease (PD) and in aromatic amino acid decarboxylase (AADC) deficiency. PD, a chronic progressive neurological disorder characterized by tremor, bradykinesia, rigidity and postural instability, results from the degeneration of dopamine-producing cells in the substantia nigra of the brain. On the other hand, AADC deficiency is a rare debilitating recessive genetic disorder due to mutations in AADC gene leading to the inability to synthesize dopamine and serotonin. Development delay, abnormal movements, oculogyric crises and vegetative symptoms characterize this severe neurometabolic disease. This article is an up to date review of the therapies currently used in the treatment of PD and AADC deficiency as well as of the recent findings that, on one hand provide precious guidelines for the drug development process necessary to PD therapy, and, on the other, suggest an aimed therapeutic approach based on the elucidation of the molecular defects of each variant associated with AADC deficiency.


Molecular Oncology | 2016

Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition

Marco Cordani; Elisa Oppici; Ilaria Dando; Elena Butturini; Elisa Dalla Pozza; Mercedes Nadal-Serrano; Jordi Oliver; Pilar Roca; Sofia Mariotto; Barbara Cellini; Giovanni Blandino; Marta Palmieri; Silvia Di Agostino; Massimo Donadelli

Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain‐of‐function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy‐related proteins and enzymes as BECN1 (and P‐BECN1), DRAM1, ATG12, SESN1/2 and P‐AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF‐κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF‐κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53‐and autophagy‐related signature. Interestingly, the mutant p53‐driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy.


ACS Chemical Biology | 2015

The Chaperoning Activity of Amino-oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I.

Elisa Oppici; Riccardo Montioli; Mirco Dindo; Laura Maccari; Valentina Porcari; Antonio Lorenzetto; Sara Chellini; Carla Borri Voltattorni; Barbara Cellini

The rare disease Primary Hyperoxaluria Type I (PH1) results from the deficit of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene frequently leading to protein misfolding. Pharmacological chaperone (PC) therapy is a newly developed approach for misfolding diseases based on the use of small molecule ligands able to promote the correct folding of a mutant enzyme. In this report, we describe the interaction of amino-oxyacetic acid (AOA) with the recombinant purified form of two polymorphic species of AGT, AGT-Ma and AGT-Mi, and with three pathogenic variants bearing previously identified folding defects: G41R-Ma, G170R-Mi, and I244T-Mi. We found that for all these enzyme AOA (i) forms an oxime at the active site, (ii) behaves as a slow, tight-binding inhibitor with KI values in the nanomolar range, and (iii) increases the thermal stability. Furthermore, experiments performed in mammalian cells revealed that AOA acts as a PC by partly preventing the intracellular aggregation of G41R-Ma and by promoting the correct peroxisomal import of G170R-Mi and I244T-Mi. Based on these data, we carried out a small-scale screening campaign. We identified four AOA analogues acting as AGT inhibitors, even if only one was found to act as a PC. The possible relationship between the structure and the PC activity of these compounds is discussed. Altogether, these results provide the proof-of-principle for the feasibility of a therapy with PCs for PH1-causing variants bearing folding defects and provide the scaffold for the identification of more specific ligands.


Journal of Cellular Biochemistry | 2017

Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia

Alessandra Carcereri de Prati; Elena Butturini; Antonella Rigo; Elisa Oppici; Michele Rossin; Diana Boriero; Sofia Mariotto

Tumor dormancy is a poorly understood stage in cancer progression characterized by mitotic cycle arrest in G0/G1 phase and low metabolism. The cells survive in a quiescent state and wait for appropriate environmental conditions to begin proliferation again giving rise to metastasis. Despite their key role in cancer development and metastasis, the knowledge about their biology and origin is still very limited due to the poorness of established in vitro models that faithfully recapitulated tumor dormancy. Using at least three cycles of 1% O2 hypoxia and reoxygenation, we establish and characterize the hypoxia‐resistant human breast cancer cell line chMDA‐MB‐231 that can stably survive under 1% O2 condition by entering into dormant state characterized by arrest in G0/G1 phase and low metabolism. This dormant state is reversible since once replaced in normoxia the cells recover the proliferation rate in 2 weeks. We show that chronic hypoxia induces autophagy that may be the survival mechanism of chMDA‐MB‐231 cells. Furthermore, the data in this work demonstrate that cycling hypoxic/reoxygenation stress selects MDA‐MB‐231 population that presents the cancer stem‐like phenotype characterized by CD24−/CD44+/ESA+ expression and spheroid forming capacity. We believe that our study presents a promising approach to select dormant breast cancer cells with stem‐like phenotype using the hypoxia/reoxygenation regimen that may represent an area with profound implications for therapeutic developments in oncology. J. Cell. Biochem. 118: 3237–3248, 2017.

Collaboration


Dive into the Elisa Oppici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge