Elisabeth G. Pacyna
Norwegian Institute for Air Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabeth G. Pacyna.
Water Air and Soil Pollution | 2002
Elisabeth G. Pacyna; Jozef M. Pacyna
An estimate of the global emission of mercury from anthropogenicsources in 1995 has been prepared. Major emphasis is placed onemissions from stationary combustion sources, non-ferrous metalproduction, pig iron and steel production, cement production andwaste disposal. About three quarters of the total emission,estimated to be about 1900 tonnes, was from combustion of fuels, particularly coal combustion in China, India, and South and NorthKorea. In general, the Asian countries contribute about 56% to the global emissions of mercury to the atmosphere. Europe and North America seem to contribute less than 25%. The major chemical form of mercury emitted to the atmosphere is gaseouselemental mercury, contributing with about 53% to the totalemissions, followed by gaseous bivalent mercury with 37%. The Hg emissions on particles contribute only about 10% to the total emissions. Again, Asia contributes about 50% to the totalemissions of all individual chemical forms of mercury.
Atmospheric Environment | 2001
Elisabeth G. Pacyna; Jozef M. Pacyna; Nicola Pirrone
Abstract Estimates of atmospheric emissions of mercury from anthropogenic sources in Europe in 1995 are presented with the information on emissions of both total mercury and its major chemical and physical forms. The 1995 anthropogenic emissions of total emissions were estimated to be about 342 tonnes , a decrease of 45% compared to these emissions in 1990. Combustion of fuels, particularly coal has been the major source of anthropogenic emissions contributing to more than half to the total emissions. The emissions from coal combustion have not changed significantly over the past decade. Major decrease has been estimated for emissions from industrial processes, particularly the chlor-alkali production using the Hg cell process. In 1995 the European emissions of anthropogenic mercury contributed about 13% to the global emissions of this element from anthropogenic sources. The anthropogenic Hg emissions in Europe were still higher than the natural emissions in the region, estimated to be about 250– 300 tonnes per year. The accuracy of estimates of anthropogenic emissions of Hg in Europe in 1995 is considered to be between 25 and 50%. The most accurate seem to be the estimates for combustion sources, while the most incomplete data were collected and/or estimated for waste disposal. The emissions of gaseous elemental mercury contributed about 61% to the emissions of the total mercury, while the contribution of gaseous bivalent mercury and particulate mercury was 32 and 7%, respectively.
Atmospheric Environment | 2003
Jozef M. Pacyna; Elisabeth G. Pacyna; Frits Steenhuisen; Simon Wilson
Abstract This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.
Science of The Total Environment | 2003
Hans von Storch; Mariza Costa-Cabral; Charlotte Hagner; Frauke Feser; Jozef M. Pacyna; Elisabeth G. Pacyna; Steffen Kolb
Over decades, large amounts of the neurotoxin lead were released into the European environment, mostly from gasoline lead additives. Emissions were growing unabatedly until the 1970s, when a series of regulations on the allowed gasoline lead content were adopted. As a result, in the 1990s most gasoline contained only small amounts of lead. We have examined this case of environmental pollution and regulation, and performed a retrospective assessment of the extent of regional-scale lead pollution and the effects of gasoline lead regulations in Europe. With the help of a regional climate model, NCEP re-analyses, spatially disaggregated lead emissions from road traffic and point sources, and various local data, the airborne pathways and depositions of gasoline lead in Europe since 1958 were reconstructed. It turns out that this approach is successful in describing the time-variable, spatially disaggregated deposition of gasoline lead. Additional data from analyses of concentrations in biota, including plant leaves, mussels and human blood, allows an assessment about the impact of the lead phase-out on the quality of the environment. Demonstrating the success of the lead policies, concentrations in leaves and human blood have steadily declined since the early 1980s. At the same time, the economic repercussions that had been feared did not emerge. Instead, the affected mineral oil and car manufacturing industries in Germany (our case-study) were able to deal with the effort without incurring significant extra costs. We suggest that our method of quantitatively reconstructing and anticipating fluxes and depositions of substances can be applied to other relevant substances as well, such as, for example, Persistent Organic Pollutants, radioactive substances or pollens.
Journal of The Air & Waste Management Association | 2010
Jozef M. Pacyna; Kyrre Sundseth; Elisabeth G. Pacyna; Wojciech Jozewicz; John Munthe; Mohammed Belhaj; Stefan Åstrom
Abstract Several measures are available for reducing mercury emissions; however, these measures differ with regard to emission control efficiency, cost, and environmental benefits obtained through their implementation. Measures that include the application of technology, such as technology to remove mercury from flue gases in electric power plants, waste incinerators, and smelters, are rather expensive compared with nontechnological measures. In general, dedicated mercury removal is considerably more expensive than a co-benefit strategy, using air pollution control equipment originally designed to limit emissions of criterion pollutants, such as particulate matter, sulfur dioxide, or oxides of nitrogen. Substantial benefits can be achieved globally by introducing mercury emission reduction measures because they reduce human and wildlife exposure to methyl mercury. Although the reduction potential is greatest with the technological measures, technological and nontechnological solutions for mercury emissions and exposure reductions can be carried out in parallel.
Water Air and Soil Pollution | 2012
Kyrre Sundseth; Jozef M. Pacyna; Elisabeth G. Pacyna; Damian Panasiuk
Knowledge concerning the main flows of priority substances (PSs) and the production systems and consumption structures in the society causing these flows is a prerequisite for any attempt to predict and understand their environmental fate as well as to efficiently minimize future environmental burdens. In this paper, a simple SFA diagram on mercury, including the main European Union (EU-27) source categories, flows and environmental endpoints which in turn affect the mercury concentrations in the EU-27 waters are illustrated. From trend analysis and future projections, it becomes obvious that emissions of mercury as a trace contaminant in fuels and minerals (primary anthropogenic emission sources) are becoming increasingly important to the environmental concentrations compared to emissions from mercury used intentionally (secondary anthropogenic sources). Additional future control strategies should therefore be targeted industrial sources and safe treatment of mercury-containing wastes, wastewater effluents, as well as residues collected from various combustion processes. It was found that knowledge on flows and emission sources on a large geographical scale is limited due to a lack of information on emission factors from various industrial processes and waste systems, especially for the mercury being discharges to water and land.
International Journal of Environmental Research and Public Health | 2017
Kyrre Sundseth; Jozef M. Pacyna; Elisabeth G. Pacyna; Nicola Pirrone; Rebecca Jayne Thorne
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.
International Journal of Environmental Research and Public Health | 2015
Kyrre Sundseth; Jozef M. Pacyna; Anna Banel; Elisabeth G. Pacyna; Arja Rautio
This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.
Archive | 2008
Jozef M. Pacyna; Kyrre Sundseth; Elisabeth G. Pacyna; John Munthe; Mohammed Belhaj; Stefan Åstrom; Damian Panasiuk; Anna Glodek
Mercury is considered a global pollutant and it has been concluded that a significant portion of humans and wildlife throughout the world are exposed to methyl mercury at levels of concern. The Gov ...
Eos, Transactions American Geophysical Union | 2002
Hans von Storch; Charlotte Hagner; Mariza Costa-Cabral; Frauke Feser; Jozef M. Pacyna; Elisabeth G. Pacyna; Steffen Kolb
For the foreseeable future, the atmosphere and the environment will remain a dumping ground for various anthropogenic substances. Some substances will have negative properties, and society will sooner or later begin regulating their emissions. To that end, science must provide society with the tools for retrospectively evaluating the physical and economical impacts of past regulations, and for evaluating scenarios in which alternative future regulations are implemented. A tool for reconstructing lead air concentrations and depositions across Europe from 1958 through 1995 has been developed that incorporates detailed emissions, a regionalized history of weather events, and an atmospheric transport model. This tool was used, in conjunction with lead measurements in both biota and human blood and with economic analysis, to assess past European gasoline-lead regulations. Some of the specific questions asked in this assessment were: How did lead emissions, atmospheric concentrations, and depositions develop since the 1950s? Was the decline in air concentrations matched by corresponding declines in plants, animals, and humans? Did the regulations result in considerable economic burdens in Germany, for example?