Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Le Bihan-Duval is active.

Publication


Featured researches published by Elisabeth Le Bihan-Duval.


BMC Genetics | 2008

Chicken meat quality: genetic variability and relationship with growth and muscle characteristics

Elisabeth Le Bihan-Duval; M. Debut; Cécile Berri; Nadine Sellier; Véronique Santé-Lhoutellier; Y. Jego; Catherine Beaumont

BackgroundThe qualitative properties of the meat are of major importance for poultry breeding, since meat is now widely consumed as cuts or as processed products. The aim of this study was to evaluate the genetic parameters of several breast meat quality traits and their genetic relationships with muscle characteristics in a heavy commercial line of broilers.ResultsSignificant levels of heritability (averaging 0.3) were obtained for breast meat quality traits such as pH at 15 min post-slaughter, ultimate pH (pHu), color assessed by lightness L*, redness a* and yellowness b*, drip loss, thawing-cooking loss and shear-force. The rate of decrease in pH early post-mortem and the final pH of the meat were shown to be key factors of chicken meat quality. In particular, a decrease in the final pH led to paler, more exudative and tougher breast meat. The level of glycogen stored in breast muscle estimated by the Glycolytic Potential (GP) at slaughter time was shown to be highly heritable (h2 0.43). There was a very strong negative genetic correlation (rg) with ultimate meat pH (rg -0.97), suggesting a common genetic control for GP and pHu. While breast muscle weight was genetically positively correlated with fiber size (rg 0.76), it was negatively correlated with the level of glycogen stored in the muscle (rg -0.58), and as a consequence it was positively correlated with the final pH of the meat (rg 0.84).ConclusionThis genetic study confirmed that selection should be useful to improve meat characteristics of meat-type chickens without impairing profitability because no genetic conflict was detected between meat quality and meat quantity. Moreover, the results suggested relevant selection criteria such as ultimate pH, which is strongly related to color, water-holding capacity and texture of the meat in this heavy chicken line.


Genetics Selection Evolution | 2003

Genetic parameters of meat technological quality traits in a grand-parental commercial line of turkey

Elisabeth Le Bihan-Duval; Cécile Berri; E. Baéza; V. Sante; Thierry Astruc; H. Rémignon; Gilles Le Pottier; James R. Bentley; Catherine Beaumont; Xavier Fernandez

Genetic parameters for meat quality traits and their relationships with body weight and breast development were estimated for a total of 420 male turkeys using REML. The birds were slaughtered in a commercial plant and the traits measured included pH at 20 min (pH20) and 24 h post-mortem (pHu) and colour of the breast and thigh meat. The heritabilities of the rate and the extent of the pH fall in the breast muscle were estimated at h2 = 0.21 ± 0.04 and h2 = 0.16 ± 0.04, respectively. Heritabilities ranging from 0.10 to 0.32 were obtained for the colour indicators in the breast muscle. A marked negative genetic correlation (rg= -0.80 ± 0.10) was found between pH20 and lightness (L*) of breast meat, both traits corresponding to PSE indicators. The pH20 in the thigh muscle had a moderate heritability (h2 = 0.20 ± 0.07) and was partially genetically related to pH20 in the breast muscle (rg= 0.45 ± 0.17). Body weight and breast yield were positively correlated with both initial and ultimate pH and negatively with the lightness of breast meat.


Meat Science | 2007

Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat.

Philippe Gatellier; Suzana Gomez; V. Gigaud; Cécile Berri; Elisabeth Le Bihan-Duval; Véronique Santé-Lhoutellier

Lipid oxidation in chicken breast was measured during refrigerated storage in air by front face fluorescence and by thiobarbituric acid techniques. Three chicken genotypes were compared: Standard (fast-growing line), Certified (medium-growing line) and Label (slow-growing line). Lipid oxidation was stable during the first 3 days of storage and then increased in the certified and label animal groups. Standard animals were very stable towards lipid oxidation. This study showed a good correlation between fluorescence intensity and thiobarbituric acid reactive substances measurements. Front face fluorescence technique can be used as a valuable index of lipid oxidation in chicken meat.


BMC Genomics | 2007

Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate

Javad Nadaf; Hélène Gilbert; Frédérique Pitel; Cécile Berri; Katia Feve; Catherine Beaumont; M. J. Duclos; Alain Vignal; Tom E. Porter; Jean Simon; S. E. Aggrey; Larry A. Cogburn; Elisabeth Le Bihan-Duval

BackgroundMeat technological traits (i.e. meat pH, water retention and color) are important considerations for improving further processing of chicken meat. These quality traits were originally characterized in experimental lines selected for high (HG) and low (LG) growth. Presently, quantitative trait loci (QTL) for these traits were analyzed in an F2 population issued from the HG × LG cross. A total of 698 animals in 50 full-sib families were genotyped for 108 microsatellite markers covering 21 linkage groups.ResultsThe HG and LG birds exhibit large differences in body weight and abdominal fat content. Several meat quality traits [pH at 15 min post-slaughter (pH15) and ultimate pH (pHu), breast color-redness (BCo-R) and breast color-yellowness (BCo-Y)] were lower in HG chickens. In contrast, meat color-lightness (BCo-L) was higher in HG chickens, whereas meat drip loss (DL) was similar in both lines. HG birds were more active on the shackle line. Association analyses were performed using maximum-likelihood interval mapping in QTLMAP. Five genome-wide significant QTLs were revealed: two for pH15 on GGA1 and GGA2, one for DL on GGA1, one for BCo-R and one for BCo-Y both on GGA11. In addition, four suggestive QTLs were identified by QTLMAP for BCo-Y, pHu, pH15 and DL on GGA1, GGA4, GGA12 and GGA14, respectively. The QTL effects, averaged on heterozygous families, ranged from 12 to 31% of the phenotypic variance. Further analyses with QTLExpress confirmed the two genome-wide QTLs for meat color on GGA11, failed to identify the genome-wide QTL for pH15 on GGA2, and revealed only suggestive QTLs for pH15 and DL on GGA1. However, QTLExpress qualified the QTL for pHu on GGA4 as genome-wide.ConclusionThe present study identified genome-wide significant QTLs for all meat technological traits presently assessed in these chickens, except for meat lightness. This study highlights the effects of divergent selection for growth rate on some behavioral traits, muscle biochemistry and ultimately meat quality traits. Several QTL regions were identified that are worthy of further characterization. Some QTLs may in fact co-localize, suggesting pleiotropic effects for some chromosomal regions.


BMC Genomics | 2013

Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness

Christopher W. Resnyk; Wilfrid Carre; Xiaofei Wang; Tom E. Porter; Jean Simon; Elisabeth Le Bihan-Duval; Michael J Duclos; Sam E Aggrey; Larry A. Cogburn

BackgroundThis descriptive study of the abdominal fat transcriptome takes advantage of two experimental lines of meat-type chickens (Gallus domesticus), which were selected over seven generations for a large difference in abdominal (visceral) fatness. At the age of selection (9 wk), the fat line (FL) and lean line (LL) chickens exhibit a 2.5-fold difference in abdominal fat weight, while their feed intake and body weight are similar. These unique avian models were originally created to unravel genetic and endocrine regulation of adiposity and lipogenesis in meat-type chickens. The Del-Mar 14K Chicken Integrated Systems microarray was used for a time-course analysis of gene expression in abdominal fat of FL and LL chickens during juvenile development (1–11 weeks of age).ResultsMicroarray analysis of abdominal fat in FL and LL chickens revealed 131 differentially expressed (DE) genes (FDR≤0.05) as the main effect of genotype, 254 DE genes as an interaction of age and genotype and 3,195 DE genes (FDR≤0.01) as the main effect of age. The most notable discoveries in the abdominal fat transcriptome were higher expression of many genes involved in blood coagulation in the LL and up-regulation of numerous adipogenic and lipogenic genes in FL chickens. Many of these DE genes belong to pathways controlling the synthesis, metabolism and transport of lipids or endocrine signaling pathways activated by adipokines, retinoid and thyroid hormones.ConclusionsThe present study provides a dynamic view of differential gene transcription in abdominal fat of chickens genetically selected for fatness (FL) or leanness (LL). Remarkably, the LL chickens over-express a large number of hemostatic genes that could be involved in proteolytic processing of adipokines and endocrine factors, which contribute to their higher lipolysis and export of stored lipids. Some of these changes are already present at 1 week of age before the divergence in fatness. In contrast, the FL chickens have enhanced expression of numerous lipogenic genes mainly after onset of divergence, presumably directed by multiple transcription factors. This transcriptional analysis shows that abdominal fat of the chicken serves a dual function as both an endocrine organ and an active metabolic tissue, which could play a more significant role in lipogenesis than previously thought.


BMC Genomics | 2010

Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate

Georgina A. Ankra-Badu; Daniel Shriner; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Frédérique Pitel; Catherine Beaumont; M. J. Duclos; Jean Simon; Tom E. Porter; Alain Vignal; Larry A. Cogburn; David B. Allison; Nengjun Yi; S. E. Aggrey

BackgroundDelineating the genetic basis of body composition is important to agriculture and medicine. In addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map main, epistatic and sex-specific QTL in an F2 reciprocal intercross between two chicken lines divergently selected for high or low growth rate.ResultsWe identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were found for both breast muscles [Pectoralis (P) major and P. minor], which suggests that they could be controlled by different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-antagonistic QTL for body composition and abdominal fat. We found several female-specific P. major QTL and sex-antagonistic P. minor and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each other to affect body composition and abdominal fatness.ConclusionsThe detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that underlie QTL controlling somatic growth in an avian model.


BMC Genetics | 2011

Improving the efficiency of feed utilization in poultry by selection. 2. Genetic parameters of excretion traits and correlations with anatomy of the gastro-intestinal tract and digestive efficiency

Hugues De Verdal; Agnès Narcy; Denis Bastianelli; Herve Chapuis; Nathalie Même; Séverine Urvoix; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau

BackgroundPoultry production has been widely criticized for its negative environmental impact related to the quantity of manure produced and to its nitrogen and phosphorus content. In this study, we investigated which traits related to excretion could be used to select chickens for lower environmental pollution.The genetic parameters of several excretion traits were estimated on 630 chickens originating from 2 chicken lines divergently selected on apparent metabolisable energy corrected for zero nitrogen (AMEn) at constant body weight. The quantity of excreta relative to feed consumption (CDUDM), the nitrogen and phosphorus excreted, the nitrogen to phosphorus ratio and the water content of excreta were measured, and the consequences of such selection on performance and gastro-intestinal tract (GIT) characteristics estimated. The genetic correlations between excretion, GIT and performance traits were established.ResultsHeritability estimates were high for CDUDM and the nitrogen excretion rate (0.30 and 0.29, respectively). The other excretion measurements showed low to moderate heritability estimates, ranging from 0.10 for excreta water content to 0.22 for the phosphorus excretion rate. Except for the excreta water content, the CDUDM was highly correlated with the excretion traits, ranging from -0.64 to -1.00. The genetic correlations between AMEn or CDUDM and the GIT characteristics were very similar and showed that a decrease in chicken excretion involves an increase in weight of the upper part of the GIT, and a decrease in the weight of the small intestine.ConclusionIn order to limit the environmental impact of chicken production, AMEn and CDUDM seem to be more suitable criteria to include in selection schemes than feed efficiency traits.


PLOS ONE | 2011

Detection of a Cis eQTL Controlling BMCO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color

Elisabeth Le Bihan-Duval; Javad Nadaf; Cécile Berri; Frédérique Pitel; Benoît Graulet; Estelle Godet; Sophie Leroux; Olivier Demeure; Sandrine Lagarrigue; Cécile Duby; Larry A. Cogburn; Catherine Beaumont; M. J. Duclos

Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.


Genetics Selection Evolution | 2006

Fatness QTL on chicken chromosome 5 and interaction with sex

Behnam Abasht; Frédérique Pitel; Sandrine Lagarrigue; Elisabeth Le Bihan-Duval; Pascale Le Roy; Olivier Demeure; Florence Vignoles; Jean Simon; Larry A. Cogburn; S. E. Aggrey; Alain Vignal; Madeleine Douaire

Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.


BMC Genomics | 2011

Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality

V. Sibut; Christelle Hennequet-Antier; Elisabeth Le Bihan-Duval; Sylvain Marthey; M. J. Duclos; Cécile Berri

BackgroundThe processing ability of poultry meat is highly related to its ultimate pH, the latter being mainly determined by the amount of glycogen in the muscle at death. The genetic determinism of glycogen and related meat quality traits has been established in the chicken but the molecular mechanisms involved in variations in these traits remain to be fully described. In this study, Chicken Genome Arrays (20 K) were used to compare muscle gene expression profiles of chickens from Fat (F) and Lean (L) lines that exhibited high and low muscle glycogen content, respectively, and of individuals exhibiting extremely high (G+) or low (G-) muscle glycogen content originating from the F2 cross between the Fat and Lean lines. Real-time RT-PCR was subsequently performed to validate the differential expression of genes either selected from the microarray analysis or whose function in regulating glycogen metabolism was well known.ResultsAmong the genes found to be expressed in chicken P. major muscle, 197 and 254 transcripts appeared to be differentially expressed on microarrays for the F vs. L and the G+ vs. G- comparisons, respectively. Some involved particularly in lipid and carbohydrate metabolism were selected for further validation studies by real-time RT-PCR. We confirmed that, as in mammals, the down-regulation of CEBPB and RGS2 coincides with a decrease in peripheral adiposity in the chicken, but these genes are also suggested to affect muscle glycogen turnover through their role in the cAMP-dependent signalling pathway. Several other genes were suggested to have roles in the regulation of glycogen storage in chicken muscle. PDK4 may act as a glycogen sensor in muscle, UGDH may compete for glycogen synthesis by using UDP-glucose for glucoronidation, and PRKAB1, PRKAG2, and PHKD may impact on glycogen turnover in muscle, through AMP-activated signalling pathways.ConclusionsThis study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.

Collaboration


Dive into the Elisabeth Le Bihan-Duval's collaboration.

Top Co-Authors

Avatar

Cécile Berri

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Mignon-Grasteau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Beaumont

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Agnès Narcy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. J. Duclos

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Pitel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nadine Sellier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Chabault

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge