Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Barizza is active.

Publication


Featured researches published by Elisabetta Barizza.


Plant Cell Reports | 2008

Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells

Michela Zottini; Elisabetta Barizza; Alex Costa; Elide Formentin; Cristina Ruberti; Francesco Carimi; Fiorella Lo Schiavo

Agrobacterium-mediated transient assays for the analysis of gene function are used as alternatives to genetic complementation and stable plant transformation. Although such assays are routinely performed in several plant species, they have not yet been successfully applied to grapevines. We explored genetic background diversity of grapevine cultivars and performed agroinfiltration into in vitro cultured plants. By combining different genotypes and physiological conditions, we developed a protocol for efficient transient transformations of selected grapevine cultivars. Among the four cultivars analyzed, Sugraone and Aleatico exhibited high levels of transient transformation. Transient expression occurred in the majority of cells within the infiltrated tissue several days after agroinfiltration and, in a few cases, it later spread to a larger portion of the leaf. Three laboratory strains of Agrobacterium tumefaciens with different virulence levels were used for agroinfiltration assays on grapevine plants. This method promises to be a powerful tool to perform subcellular localization analyses. Grapevine leaf tissues were transformed with fluorescent markers targeted to cytoplasm (free GFP and mRFP1), endoplasmatic reticulum (GFP::HDEL), chloroplast (GAPA1::YFP) and mitochondria (β::GFP). Confocal microscope analyses demonstrated that these subcellular compartments could be easily visualized in grapevine leaf cells. In addition, from leaves of the Sugraone cultivar agroinfiltrated with endoplasmic reticulum-targeted GFP-construct, stable transformed cells were obtained that show the opportunity to convert a transiently transformed leaf tissue into a stably transformed cell line.


FEBS Letters | 1999

Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions

Elisabetta Barizza; Fiorella Lo Schiavo; Mario Terzi; Francesco Filippini

Protein tyrosine phosphorylation plays a central role in a variety of signal transduction pathways regulating animal cell growth and differentiation, but its relevance and role in plants are controversial and still largely unknown. We report here that a large number of proteins from all plant subcellular fractions are recognized by recombinant, highly specific, anti‐phosphotyrosine antibodies. Protein tyrosine phosphorylation patterns vary among different adult plant tissues or somatic embryo stages and somatic embryogenesis is blocked in vivo by a cell‐permeable tyrosyl‐phosphorylation inhibitor, demonstrating the involvement of protein tyrosine phosphorylation in control of specific steps in plant development.


New Phytologist | 2009

Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling

Roberto De Michele; Elide Formentin; Marco Todesco; Stefano Toppo; Francesco Carimi; Michela Zottini; Elisabetta Barizza; Alberto Ferrarini; Massimo Delledonne; Paolo Fontana; Fiorella Lo Schiavo

Here, for the first time, a comprehensive transcriptomics study is presented of leaf senescence in the legume model Medicago truncatula, providing a broad overview of differentially expressed transcripts involved in this process. The cDNA-amplification fragment length polymorphism (AFLP) technique was used to identify > 500 genes, which were cloned and sorted into functional categories according to their gene ontology annotation. Comparison between the datasets of Arabidopsis and M. truncatula leaf senescence reveals common physiological events but differences in the nitrogen metabolism and in transcriptional regulation. In addition, it was observed that a minority of the genes regulated during leaf senescence were equally involved in other processes leading to programmed cell death, such as nodule senescence and nitric oxide signalling. This study provides a wide transcriptional profile for the comprehension of key events of leaf senescence in M. truncatula and highlights a possible regulative role for MADS box transcription factors in the terminal phases of the process.


In Vitro Cellular & Developmental Biology – Plant | 2005

Somatic embryogenesis from stigmas and styles of grapevine

Francesco Carimi; Elisabetta Barizza; Massimo Gardiman; Fiorellia Lo Schiavo

SummaryAn in vitro protocol has been developed for callus indiction, somatic embryogenesis, and plant regeneration from stigma-style culture of grapevine. Four different grapevine cultivars (Vitis vinifera L.: cvs. ‘Bombino Nero’, ‘Greco di Tufo’, ‘Merlot’, and ‘Sangiovese’) were tested. Exlants were cultured on Nitsch and Nitsch medium (NN) supplemented with various combinations of 6-benzylaminopurine (BA: 4.5 and 9.0 μM) and β-naphthoxyacetic acid (NOA; 5.0 and 9.9 μM). Sucrose (88 mM) was used as the carbon source. Somatic embryogenesis was induced within 3–7 mo. after culture initiation. Even though explants of different origin (unfertilized ovules and anthers) regenerated somatic embryos, the higher embryogenic potential was observed in stigma and style explants, with the exception of ‘Merlot’, which regenerated somatic embryos only from unfertilized ovules. The percentages of stigma-style explants producing somatic embryos was 7% in ‘Bombino Nero’ (cultured on NN medium supplemented 9.0 μM BA and 9.9 μM NOA). 14% in ‘Greco di Tufo’ (4.5 μM BA and 9.9 μM NOA), and 8% in ‘Sangiovese’ (9.0 μM BA and 9.9 μM NOA). The presence of growth regulators (BA and NOA) in the medium was essential for induction of somatic embryogenesis. Plants were regenerated on hormone-free NN medium containing 88 mM sucrose.


Plant Molecular Biology | 2004

Potassium and carrot embryogenesis: Are K + channels necessary for development?

Alex Costa; Armando Carpaneto; Serena Varotto; Elide Formentin; Oriano Marin; Elisabetta Barizza; Mario Terzi; Franco Gambale; Fiorella Lo Schiavo

The expression pattern of the KDC1gene, coding for an inwardly-rectifying K+ channel of Daucuscarota, is described in several embryo stages and seedling tissues. Relative quantitative RT-PCR experiments indicated that, during (somatic) embryonic development, the KDC1 transcript appears as early as the globular stage and that the transcript level remains constant throughout the successive heart and torpedo stages. Thereafter, the KDC1 transcript is preferentially expressed in plant roots, but is also present in other tissues, and in particular, in the shoot apical meristem. In situ hybridisation experiments showed that in embryos KDC1 mRNA is detectable preferentially in protoderm cells with a stage dependent expression pattern. At later times, the hybridisation signal is particularly evident in root hairs, root epidermis and endodermis, but is also observed in single cell layers corresponding to L1 of the shoot apical meristem and leaf primordia. Promoter studies with the β-glucuronidase reporter gene confirm preferential expression of KDC1 in embryo protoderm cells and in plant root epidermis and root hairs. Western blot analysis of embryonic proteins and immunolocalisation experiments on somatic embryos sections revealed the presence of KDC1 during embryo development. Consistent with these observations, patch-clamp experiments performed on protoplasts isolated from embryos at the torpedo stage demonstrated the presence of functional inward rectifying K+ channels. This is the first report on the expression of a plant ion channel during embryo development.


PLOS ONE | 2014

Mitochondria Change Dynamics and Morphology during Grapevine Leaf Senescence

Cristina Ruberti; Elisabetta Barizza; Martina Bodner; Nicoletta La Rocca; Roberto De Michele; Francesco Carimi; Fiorella Lo Schiavo; Michela Zottini

Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.


Frontiers in Plant Science | 2018

Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses

Elide Formentin; Cristina Sudiro; Giorgio Perin; Samantha Riccadonna; Elisabetta Barizza; Elena Baldoni; Enrico Lavezzo; Piergiorgio Stevanato; Gian Attilio Sacchi; Paolo Fontana; Stefano Toppo; Tomas Morosinotto; Michela Zottini; Fiorella Lo Schiavo

Salinity tolerance has been extensively investigated in recent years due to its agricultural importance. Several features, such as the regulation of ionic transporters and metabolic adjustments, have been identified as salt tolerance hallmarks. Nevertheless, due to the complexity of the trait, the results achieved to date have met with limited success in improving the salt tolerance of rice plants when tested in the field, thus suggesting that a better understanding of the tolerance mechanisms is still required. In this work, differences between two varieties of rice with contrasting salt sensitivities were revealed by the imaging of photosynthetic parameters, ion content analysis and a transcriptomic approach. The transcriptomic analysis conducted on tolerant plants supported the setting up of an adaptive program consisting of sodium distribution preferentially limited to the roots and older leaves, and in the activation of regulatory mechanisms of photosynthesis in the new leaves. As a result, plants resumed grow even under prolonged saline stress. In contrast, in the sensitive variety, RNA-seq analysis revealed a misleading response, ending in senescence and cell death. The physiological response at the cellular level was investigated by measuring the intracellular profile of H2O2 in the roots, using a fluorescent probe. In the roots of tolerant plants, a quick response was observed with an increase in H2O2 production within 5 min after salt treatment. The expression analysis of some of the genes involved in perception, signal transduction and salt stress response confirmed their early induction in the roots of tolerant plants compared to sensitive ones. By inhibiting the synthesis of apoplastic H2O2, a reduction in the expression of these genes was detected. Our results indicate that quick H2O2 signaling in the roots is part of a coordinated response that leads to adaptation instead of senescence in salt-treated rice plants.


Archive | 2018

Plant Cell Cultures as Model Systems to Study Programmed Cell Death

Sara Cimini; Maria Beatrice Ronci; Elisabetta Barizza; Maria Concetta de Pinto; Vittoria Locato; Fiorella Lo Schiavo; Laura De Gara

The study of programmed cell death (PCD) activated in a certain group of cells is complex when analyzed in the whole plant. Plant cell suspension cultures are useful when investigating PCD triggered by environmental and developmental stimuli. Due to their homogeneity and the possibility to synchronize their responses induced by external stimuli, these cultures are used for studying the signaling pathways leading to PCD. The first problem in the analysis of PCD in cell cultures is the quantification of cell viability/death over time. Cultured cells from different plant species may have specific mitotic patterns leading to calli or cell chains mixed to single cell suspensions. For this reason, not all cell cultures allow morphological parameters to be investigated using microscopy analysis, and adapted or ad hoc methods are needed to test cell viability.Here we report on some accurate methods to establish and propagate cell cultures from different plant species, including crops, as well as to determine cell viability and PCD morphological and genetic markers. In particular, we describe a protocol for extracting nucleic acids required for real-time PCR analysis which has been optimized for those cell cultures that do not allow the use of commercial kits.


Frontiers in Plant Science | 2018

H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells

Elide Formentin; Cristina Sudiro; Maria Beatrice Ronci; Locato Vittoria; Elisabetta Barizza; Piergiorgio Stevanato; Ijaz Bushra; Michela Zottini; Laura De Gara; Fiorella Lo Schiavo

Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance.


BMC Microbiology | 2018

Biocontrol traits of Bacillus licheniformis GL174 , a culturable endophyte of Vitis vinifera cv. Glera

Sebastiano Nigris; Enrico Baldan; Alessandra Tondello; Filippo Zanella; Nicola Vitulo; Gabriella Favaro; Valerio Guidolin; Nicola Bordin; Andrea Telatin; Elisabetta Barizza; Stefania Marcato; Michela Zottini; Andrea Squartini; Giorgio Valle; Barbara Baldan

BackgroundBacillus licheniformis GL174 is a culturable endophytic strain isolated from Vitis vinifera cultivar Glera, the grapevine mainly cultivated for the Prosecco wine production. This strain was previously demonstrated to possess some specific plant growth promoting traits but its endophytic attitude and its role in biocontrol was only partially explored. In this study, the potential biocontrol action of the strain was investigated in vitro and in vivo and, by genome sequence analyses, putative functions involved in biocontrol and plant-bacteria interaction were assessed.ResultsFirstly, to confirm the endophytic behavior of the strain, its ability to colonize grapevine tissues was demonstrated and its biocontrol properties were analyzed. Antagonism test results showed that the strain could reduce and inhibit the mycelium growth of diverse plant pathogens in vitro and in vivo. The strain was demonstrated to produce different molecules of the lipopeptide class; moreover, its genome was sequenced, and analysis of the sequences revealed the presence of many protein-coding genes involved in the biocontrol process, such as transporters, plant-cell lytic enzymes, siderophores and other secondary metabolites.ConclusionsThis step-by-step analysis shows that Bacillus licheniformis GL174 may be a good biocontrol agent candidate, and describes some distinguished traits and possible key elements involved in this process. The use of this strain could potentially help grapevine plants to cope with pathogen attacks and reduce the amount of chemicals used in the vineyard.

Collaboration


Dive into the Elisabetta Barizza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge